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Abstract. In this short note, we address a common misconception at the interface of probability
theory and public-key cryptography.

1. Introduction

Suppose Alice sends a secret bit c to Bob over an open channel, in the presence of a computa-
tionally unbounded (passive) adversary Eve. Let PB and PE be the probabilities for Bob and Eve,
respectively, to correctly recover c. It is well known that if PB = 1, then a straightforward encryp-
tion emulation attack gives PE = 1 as well. In this note, we address a common misconception that
this can be somehow “generalized” to the case PB < 1, i.e., emulating encryption (or receiver’s
algorithms, or both) can give PE = PB. The basic reason why this is wrong is that Eve can never
fully emulate Alice or Bob since Eve’s probability space is inherently different from that of Alice or
Bob. When PB = 1, this does not matter because “always correct” in a (finite) probability space
implies “always correct” in any subset of this probability space. However, if PB < 1, the situation
can be quite different.

In [1], we have gone where no cryptographer had gone before and suggested that it might be
possible to build a public-key cryptographic protocol entirely based on probability theory, without
using any algebra or number theory. This was met with skepticism (to put it mildly) based on a
strong belief in impossibility of having PB > PE . This skepticism has materialized in a preprint by
Panny [5] who courageously delved into the depths of elementary probability theory and tried to
actually compute some probabilities instead of just saying “this is impossible because this cannot
possibly be possible” as most other believers in “flat Earth” do. His preprint is in two independent
parts: theoretical, where he does probability computations attempting to prove PE ≥ PB, and
(completely unrelated) experimental part where he offers a statistical attack on ciphertext in our
protocol in [1] making Eve succeed (in recovering Alice’s secret bit) with an unspecified probability
PE > 1

2 . The fact that this probability (or, rather, an experimental approximation thereof) was not
specified is unfortunate since it leaves open the question of whether or not this particular attack
yields PE ≥ PB for the protocol in [1].

The main purpose of this short note is to show (in Section 3) that there is no “generic” algorithm
(like emulating encryption, or receiver’s algorithms, or both) for Eve to guarantee PE ≥ PB. Of
course, for any particular protocol, there might be an “intelligent”, protocol-specific attack, that
might give PE ≥ PB, but the question of whether or not there is always a protocol-specific attack
that succeeds with probability PE ≥ PB remains open.

For the record:
• We admit that in our scheme in [1], PE > 1

2 . We explain in Section 2 below why and how Eve
can achieve that.
• The PB > PE claim for the general, “framework”, scheme in [1] still stands. In Section 2, we

reproduce this framework and give some argument in support of this claim.
• In Section 3, we give an explanation of why typical “proofs” of PE = PB (or even of PE ≥ PB)

are flawed. Then we specifically address the decryption emulation attack, to answer a popular
concern along the lines of “if Eve is computationally unbounded, she can just emulate Bob and be
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at least as successful as Bob is in recovering Alice’s plaintext”. Here “decryption emulation attack”
is a slang for emulating all the receiver’s algorithms used in a protocol.

Section 2 also explains why in schemes like the one in [1], PB inherently cannot be larger than
0.75. Regretfully, this probability appears to be not large enough to be useful in any meaningful
real-life scenario, as far as we can see.

Finally, we encourage curious readers to read about the famous Monty Hall problem [2], to
appreciate the importance of the probability space, and not just “random coins”, in computing
probabilities. A quote from Wikipedia [2]: “Paul Erdös, one of the most prolific mathematicians
in history, remained unconvinced until he was shown a computer simulation...” shows that non-
believers in a (sometimes crucial) role of the probability space are in a good company.

We realize that firm believers in “flat Earth” will not even read our note because it is much
easier to accuse of heresy than to search for the truth, but we hope that more open-minded readers
will be curious enough to find out how probability theory just a little bit beyond the first course in
discrete mathematics can be used in cryptographic constructions.

2. How PB can possibly be larger than PE: a generic example

Let Alice be the sender of a secret bit c and Bob the receiver. Suppose Alice has two disjoint
probability spaces, S1 and S2, to pick her encryption key from. Assume, for simplicity of the
analysis, that S1 and S2 are public (although they are typically not) and that Alice will select
between S1 and S2 with probability 1

2 (although this probability may be private as well).
Suppose that if Alice picks her encryption key from S1, then Bob decrypts correctly with proba-

bility q1, and if she picks her encryption key from S2, then Bob decrypts correctly with probability
q2. Then Bob decrypts correctly with probability 1

2(q1 + q2). Suppose q2 > q1 and q2 + q1 > 1.
The latter condition implies that, in some instances, an encryption key from S1 produces the same
ciphertext as some encryption key from S2 does. Denote by S12 ⊆ S1 the set of these “special”
encryption keys.

Let τ1 be the probability of the following event: Alice picked an encryption key from S12,
conditioned on (Alice picked an encryption key from S1 and Bob decrypted correctly). Why do
we need this weird-looking condition? It is needed to express, in terms of q1, the probability for
Bob to decrypt correctly in case Alice picked an encryption key from S12 (after choosing to pick
it from S1). Indeed, this probability is equal to τ1q1 by the probability of the intersection of two
events formula. The two events here are (both conditioned on Alice having picked her encryption
key from S1): (1) Alice picked her encryption key from S12; (2) Bob decrypted correctly.

How is Eve going to decrypt? The most obvious way is to narrow down the selection of decryption
key (while emulating Bob’s decryption algorithm) by assuming that Alice has picked her encryption
key from S2 (since q2 > q1 gives Bob a better chance for success in that case). Then, Eve would
emulate Bob’s algorithm in the hope that this will give her the correct decryption of Alice’s bit
with probability q2 >

1
2(q2 + q1). However, since Alice selects S2 with probability 1

2 , the actual

probability for Eve to decrypt Alice’s bit correctly (if she uses this strategy) is PE = 1
2q2 + 1

2τ1q1.
Here q2 is the probability for Eve to decrypt correctly (by emulating Bob’s randomness) in case
Alice selected S2 to pick her encryption key from, and τ1q1 is the probability for Eve to decrypt
correctly in case Alice selected S1 (see above). Then we have:

• The probability for Bob to decrypt Alice’s bit correctly is PB = 1
2(q2 + q1).

• The probability for Eve to decrypt Alice’s bit correctly (if she uses the above strategy) is
PE = 1

2(q2 + τ1q1). Thus, if q2 + τ1q1 > 1, then PE > 1
2 .

• PE < PB. This is because τ1q1 < q1. Indeed, obviously one cannot have τ1q1 > q1, and
τ1q1 = q1, or τ1 = 1, would defy the purpose for Alice to have a separate S1 in the first place.
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Thus, this most obvious attack does not give PE ≥ PB if Alice is able to select S1 and S2 such
that q2 > q1, q2 + q1 > 1, and τ1 < 1. An example of such selection was given in [1]. It is
straightforward to see that other strategies (i.e., other probability distributions) for Eve to select
between S1 and S2 for a supposed encryption key will result in an even lower probability PE of
success.

In particular instantiations of this general idea there might be instantiation-specific statistical
attacks on Bob’s public key or Alice’s ciphertext [5], but the point we are trying to make here is that,
contrary to what skeptics claim, there is no “universal” (e.g. encryption/decryption emulation)
attack on such a scheme that would guarantee PE ≥ PB. We will establish this more formally in
the next section.

To conclude this section, we note that we were unable to find an instantiation of this general
scheme where both q2 and q1 would be greater than 1

2 , so it appears that PB = 1
2(q2 + q1) <

3
4 in

any instantiation of this scheme. In the instantiation offered in [1], PB is approximately 0.55.

3. Why all “proofs” of PE = PB fail

Below is a short version of a typical “proof” of PE = PB. In what follows, Alice is the sender
of a secret plaintext KA and Bob the receiver who, upon decrypting Alice’s ciphertext, obtains
KB and wants KB = KA, with probability PB > 1

2 . The adversary Eve wants to recover KA,
with probability PE ≥ PB. Our main goal in this section is to show that emulation attacks
(be it emulation of encryption, or decryption, or both) cannot give PE = PB in any meaningful
instantiation of the general scheme from Section 2, including the one in [1]. First we briefly
reproduce a typical claim, with a “proof”.

Proposition 1. Let RA be Alice’s randomness, RB Bob’s randomness, and T the (public) transcript
of communication. Suppose RA conditioned on T and RB conditioned on T are independent. Let
KA be Alice’s plaintext, KB the result of Bob’s decryption, and p = PB the probability of having
KB = KA after the communication protocol execution. Then unbounded Eve, on input T , can
generate a value KC such that PE = Pr(KC = KA) = p.

Proof. Let KA = f(RA, T ) and KB = g(RB, T ). Conditioned on T , Eve can sample Bob’s coins.
Let R′

B denote Bob’s randomness emulated by Eve. Output the value KC = g(R′
B, T ), which is

what Bob would output on input (R′
B, T ). The triples (RA, RB, T ) and (RA, R

′
B, T ) are identically

distributed. Hence the values of p are identical.
�

Below we point out some issues with this proof that show that the proof is, at the very least,
incomplete if p < 1. If p = 1, the claim of the proposition is well known to be true, as established
by a straightforward encryption emulation attack.

We note, in passing, that RA and RB include not only “random coins”, but also probability
spaces. Random coins of Alice and Bob are, indeed, independent in any meaningful public-key
communication model. Probability space of the sender, on the other hand, can be dependent on
the receiver’s public key and therefore on his randomness; this happens even in some well-established
schemes, e.g. in PollyCracker. This is not a serious issue though, just something to keep in mind.

Serious issue. Assume, for the sake of argument, that the claim “The triples (RA, RB, T ) and
(RA, R

′
B, T ) are identically distributed” in the above proof is correct under appropriate indepen-

dence conditions. Even that, however, does not prove the claim of the proposition, which is: “Then
unbounded Eve, on input T , can generate value KC such that Pr(KC = KA) = Pr(KB = KA) =
p”. How can Eve do that? Assume for simplicity that KA is just a single bit.

What the above proof suggests is basically an “encryption/decryption emulation attack”. That
is, Eve generates all possible Alice’s (plaintext, ciphertext) pairs and all possible Bob’s decryption
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keys, with all possible randomness, that would match the public key and the protocol description.
Then Eve selects all (plaintext, ciphertext, decryption key) triples that give KB = KA. (Recall
that KA is Alice’s plaintext and KB is the result of decrypting Alice’s ciphertext by Bob.) Some
of these triples will have KB = KA = 0, while others will have KB = KA = 1. Then what? Select
a triple from this pool uniformly at random (or using whatever other distribution)? Then Eve’s
probability space will be very different from Bob’s, and therefore there is no reason for PE to be
equal to PB with this strategy.

Thus, the above proof is at least incomplete since it does not mention any algorithm for Eve to
make that choice and actually generate a value KC that would be equal to KA with probability
PB. �

To be fair, our argument above only shows that there is no algorithm for Eve to achieve PE = PB.
But what about PE ≥ PB? To try to achieve this, the best strategy for Eve is probably to forget
about Bob’s algorithms, emulate just Alice’s encryption algorithm, create a probability distribution
on the set of all possible (plaintext, ciphertext) pairs, for all possible values of Bob’s public key, and
then, when given a ciphertext, select the plaintext that corresponds to it with higher probability.
This basically takes us to the situation considered in Section 2: this strategy will guarantee PE > 1

2 ,
but PE ≥ PB is still questionable because Alice’s (private) probability space is narrower than Eve’s.
To illustrate how this matters, here is a simple

Example 1. [3] In a city where every family has two children, Alice and Eve walk down the street
and meet Bob with a little boy in a stroller; this boy is Bob’s public key. Bob tells them that he has
two children, but the older child (Bob’s private key) is at school now, and Bob suggests that Alice
and Eve try to guess whether the other child is a boy or a girl. While Eve walks away building a
probability distribution on the set of all possible gender pairs, Alice finds out that the boy in the
stroller was born on a Tuesday. This did not give Alice any information about the other child’s
gender, but it changed Alice’s probability space! Now it is not “all families with two children where
the younger child is a boy” but, say, “all families with two children where the younger child is a
boy and with a boy born on a Tuesday”.

The result is: Eve comes to the conclusion that the other child is a boy with probability 1
2 (because

the pairs (GG), (BG), (GB), (BB) are assumed to be equally likely in a random family with two
children, and the fact that the boy in the stroller is the younger child narrows it down to (GB),
(BB)), whereas Alice comes to the conclusion (using Bayes’ formula) that the other child is a boy
with probability 13

20 >
1
2 .

One can say that in this example, Alice got information not available to Eve (even though
this information is irrelevant to Bob’s private key), and this seems to be prohibited by theoretical
cryptography rules of engagement (a.k.a. Kerckhoffs’s principles). However, in actual cryptographic
scenarios (including the one in [1]), Alice can “artificially” change her own probability space to her
liking. Eve, of course, is aware of all possible probability space choices by Alice, but all she can do is
“average out” their probability distributions, which will almost for sure result in different probability
distributions on the set of (plaintext, ciphertext) pairs for Alice and for Eve; sometimes it may
even reverse the preference of one plaintext (given a ciphertext) over another. This phenomenon is
called Simpson’s paradox [4]: a trend can appear in several different groups of data but disappear
or reverse when these groups are combined. In reference to the above example, Alice could use any
information including information available also to Eve (e.g. the boy in the stroller is blonde) to
(privately) narrow down her probability space, while Eve will not know which probability space
Alice has chosen. Compare this to the general scheme in Section 2.

Finally, we consider the attack where Eve emulates just Bob (the receiver). If the probability
distribution used by Bob to generate his public key is known to the public (which was the case in
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[1]), then decryption emulation attack may seem like a reasonable strategy for Eve, i.e., Eve can
generate all possible Bob’s private keys, then generate all possible Bob’s public keys corresponding
to each of his private keys, and then select all (private key, public key) pairs with public key
matching the one actually published by Bob. This will yield a probability distribution (conditioned
on T ) on the set of all possible Bob’s private keys, and Eve can select one of the private keys
that occurs with highest probability in this distribution. The probability PE = Pr(KC = KB)
might then be larger than 1

2 , but this probability has little to do with PB = Pr(KB = KA) = p
since the latter probability is largely controlled by Alice. Below we show that if Eve achieves
PE = Pr(KC = KB) > 1

2 , then, in fact, PE < PB provided PB > 1
2 .

Emulating Bob will result in the following success probability PE for Eve to recover KA in the
case where KA is a single bit (assuming that KB and KC , too, can only take values 0 or 1):

PE = Pr(KC = KA) = Pr(KC = KB) · Pr(KA = KB) + Pr(KC 6= KB) · Pr(KA 6= KB).

All probabilities here are conditioned on T . Also, we assume that, since Eve emulates just Bob,
Eve’s and Alice’s randomness are independent (conditioned on T ), hence the events KC = KB and
KA = KB (conditioned on T ) are independent.

Denote Pr(KB = KA) = p, Pr(KC = KB) = σ. Then we have:

PE = Pr(KC = KA) = σp+ (1− σ)(1− p) =
1

2
(2σ − 1)(2p− 1) +

1

2
.

If p > 1
2 and σ > 1

2 , then PE > 1
2 , but we claim that PE is less than p in this case. Indeed,

1
2(2σ − 1)(2p − 1) + 1

2 < p is equivalent to (2σ − 1)(2p − 1) < 2p − 1, which is true since σ < 1.
The latter holds because in a scenario similar to that in Section 2, typically (in particular, in the
scheme in [1]), to the same Bob’s public key, any private (decryption) key from the pool of all
private keys can be associated with nonzero probability. In particular, there will be private keys
that yield KB = 1, as well as those that yield KB = 0.

Thus, while there might be an instantiation-specific statistical attack on Bob’s public key, it will
have nothing to do with emulation attack(s) suggested by the above proof of Proposition 1. This
also explains why the two parts (theoretical and experimental) in [5] are completely unrelated and
perhaps also why the probability PE in the experimental part of [5] is not specified.
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