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Abstract. We describe an alternative way of computing Alexander polynomials of knots/links,
based on the Artin representation of the corresponding braids by automorphisms of a free
group. Then we apply the same method to other representations of braid groups discovered
by Wada and compare the corresponding isotopic invariants to Alexander polynomials.

In memory of Vitaly Romankov

1. Introduction

Our procedure for obtaining isotopic invariants of a link is based on the following well-
known facts; a general reference is the monograph [4].

• Every link is a closed braid. Denote by Bn the braid group on n strands.

• Two braids β1 ∈ Bn and β2 ∈ Bm produce isotopically equivalent links when closed if
and only if the braid word β1 can be taken to the braid word β2 by a sequence of Markov
moves. (See our Section 2.2 for more details.)

• The abelianization (i.e., the factor group by the commutator subgroup) of any braid
group Bn is an infinite cyclic group.

• Every braid group Bn has faithful representations by automorphisms of the free group
Fn of rank n. Let us denote the image of such a representation by Cn.

• Every group Cn has a homomorphism to the group of n× n matrices over one-variable
Laurent polynomials. This homomorphism is not necessarily injective.

Matrices mentioned in the last bullet point are obtained as follows. Let {x1, . . . , xn} be
generators of the ambient free group Fn. First one computes the n× n Jacobian matrix Jφ
of a given automorphism φ ∈ Aut(Fn). This is a matrix of partial Fox derivatives di(yj),
where yj = φ(xj). Fox derivatives are elements of the group ring ZFn, see Section 2.1 for
more details.

The matrix Jφ has some interesting properties similar to the “usual” Jacobian matrix of
a multivariate function; for example, given a homomorphism φ : Fn → Fn, Jφ is invertible
if and only if φ is invertible, i.e., is an automorphism of Fn [3]. Also, the rows of Jφ are
linearly independent over the group ring of Fn if and only if φ is injective [13].

However, the map φ→ Jφ is not a homomorphism since by the chain rule for Fox deriva-
tives, one has Jφψ = JψφJψ, where J

ψ
φ denotes the result of applying the homomorphism ψ

to all entries of Jφ. (Any homomorphism of Fn can be extended to the group ring ZFn by
linearity.)

If we want to get a representation of automorphisms from Cn using Jacobian matrices, we
need to apply a homomorphism, call it α, to the product JψφJψ to get (JψφJψ)

α = Jψαφ Jαψ .
1
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Then, if Jψαφ = Jαφ for all φ, ψ ∈ Cn, we get a representation of automorphisms from Cn by
taking φ ∈ Cn to Jαφ .

For some Cn, this α can be the homomorphism from the group Fn to the infinite cyclic
group < t > obtained by taking every xi to t. This homomorphism can be naturally extended
to the homomorphism from the group ring ZFn to the group ring Z[t]; the latter is the ring
of Laurent polynomials over Z.

For a particular representation of Bn by a subgroup of Aut(Fn), known as the Artin
representation, the representation by matrices over Laurent polynomials described above is
known as the Burau representation, see [5] or [4]. It happens so that the g.c.d. of all minors of
the same corank of the [Burau matrix of a braid minus the identity matrix] are invariant under
Markov moves and therefore are isotopic invariants of the corresponding links. For (nonzero)
minors of the maximum rank, these invariants are known as Alexander polynomials, although
the original way of defining Alexander polynomials of a knot was different; it was based on the
Wirtinger presentation of the fundamental group G of a knot, see e.g. [6]. Thus, Alexander
polynomials are actually invariants of (the isomorphism class of) the group G and therefore
cannot possibly distinguish two knots with isomorphic fundamental groups. However, we
argue in Section 4 that since, informally speaking, Markov moves form a relatively small
subset of the set of all Tietze transformations, our approach in Section 3.1 allows for a more
delicate analysis of how a Burau matrix is affected by Markov moves.

More recently, Wada [15] discovered several other representations of the braid group Bn by
automorphisms of Fn. These representations were later shown to be faithful [14] (although
this does not play a role in the present paper). Based on Wada’s representations, one can
obtain other representations of braids by n × n matrices over Laurent polynomials and
produce the corresponding isotopic invariants of knots and links. However, as we conjecture
in Section 6, we do not get brand new invariants that way; what we get is most likely a
specialization of Alexander polynomials.

2. Preliminaries

All facts in this section are well known and can be found, for example, in [4], but we give
a concise exposition here for the reader’s convenience.

2.1. Fox derivatives. Let Fn be the free group of rank n and {x1, . . . , xn} a fixed set of
generators. Let ZFn be the integral group ring of the group Fn.
Partial Fox derivatives ∂i can be defined for elements of the group Fn using the follow-

ing rules, and then extended by linearity to the whole group ring ZFn: (1) ∂i(xj) = δij
(Kronecker’s delta); (2) if u = vxi ∈ Fn, then ∂i(u) = v + ∂i(v); (3) if u = vx−1

i ∈ Fn,
then ∂i(u) = −vx−1

i + ∂i(v); (4) if u = vxj, j ̸= i, then ∂i(u) = ∂i(v). For example, if
u = x1x2x

−1
1 x2, then ∂1(u) = −x1x2x−1

1 + 1.

2.2. Markov moves. We will denote braids and the corresponding braid words (i.e., words
in the standard generators σi of a braid group Bn) by the same letters when there is no
confusion.

Markov’s theorem (see e.g. [4]) is: two braids β1 ∈ Bn and β2 ∈ Bm produce isotopically
equivalent links when closed if and only if the corresponding braid word β1 can be taken to
the braid word β2 by a sequence of Markov moves, and the latter are:
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1. Conjugation in a braid group. That is, if β ∈ Bn, one can replace β by γ−1βγ for some
γ ∈ Bn.

2. “Stabilization”. That is, if β ∈ Bn, one can multiply β by σn or by σ−1
n on the right.

Note that the group Bn+1 is generated by σ1, . . . , σn, whereas the group Bn is generated by
σ1, . . . , σn−1.

3. Converse of (2). That is, if it happens so that β = γσ±1
n , where γ ∈ Bn, then one can

replace β by γ.

2.3. The ring Z[t±1] of Laurent polynomials. The ring Z[t±1] is a principal ideal domain,
which means that every ideal is generated (as an ideal) by a single Laurent polynomial.

This implies, in particular, that if there are several ideals Ek of Z[t±1], each generated by
a polynomial pk, then the sum of the ideals Ek is generated (as an ideal) by the g.c.d. of the
polynomials pk.

2.4. Matrices over Z[t±1] and their elementary ideals. In knot theory, there is a well-
known construction of the Alexander matrix from the Wirtinger presentation of the funda-
mental group of a knot by generators and defining relations, see e.g. [6, Chapter 7]. It is
similar to our construction of the Burau representation described in the Introduction, in the
sense that the Alexander matrix, too, is a matrix of abelianized partial Fox derivatives, but
these derivatives are of the defining relations in the Wirtinger presentation.

Since any two presentations (by generators and defining relations) of the same group are
equivalent under Tietze transformations, one can study the effect of Tietze transformations
on properties of the Alexander matrix and derive knot invariants that way.

Our approach here is similar, except that we deal here with different matrices over Z[t±1]
(in particular, our matrices are always square), and invariance that we want is under Markov
moves, not under Tietze transformations. However, the linear algebra part of our approach
is very similar to [6, Chapter 7.4].

Specifically, let M be an n × n matrix over Z[t±1] and for 0 < n − k < n, let Ek =
Ek(M) be the ideal of the ring Z[t±1] generated by all minors of size (n − k) of the matrix
M . Additionally, let Ek(M) = {0} if k < 0 and Ek(M) = Z[t±1] if k ≥ n. Then the
chain of the ideals E0 ⊆ E1 ⊆ . . . ⊆ En = En+1 = Z[t±1] is invariant under the usual
elementary operations on the rows and/or columns ofM , as well as under augmentingM by
simultaneously adding an extra row (0 . . . 01) (at the bottom) and an extra column (0 . . . 01)
(on the right), thus increasing the size of M by 1.

3. Artin’s representation of braid groups and the corresponding
polynomial invariants

There is a well-known representation, due to Artin, of the braid group Bn in the group
Aut(Fn) of automorphisms of the free group Fn (see e.g. [4, p.25]).

Let Fn be generated by x1, . . . , xn. Then the automorphism σ̂i corresponding to the braid
generator σi takes xi to xixi+1x

−1
i , xi+1 to xi, and fixes all other generators xk. Denote this

representation by φ.
The corresponding Jacobian matrix Jφ is “mostly” the identity matrix, with the exception

of a 2 × 2 cell whose main diagonal is part of the main diagonal of Jφ, and this cell looks
like this:
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(
1− xixi+1x

−1
i xi

1 0

)
.

If we now define the homomorphism α by taking each xi to t, we will have the condition
Jψαφ = Jαφ satisfied for all φ, ψ in the image of Artin’s representation, and therefore φ→ Jαφ

will be a homomorphism. The corresponding 2×2 cell in Jαφ will look like this:

(
1− t t
1 0

)
.

We note that the inverse of this cell is

(
0 1
t−1 1− t−1

)
.

This particular representation of braids by matrices Jαφ is known as the Burau represen-
tation, see [5] or [4].

3.1. Invariance under Markov moves. Now we are going to show that the ideals of the
ring Z[t±1] generated by all k × k minors of the matrix Jαφ − I are invariant under Markov
moves applied to the braid that corresponds to the automorphism φ. Here I denotes the
identity matrix of the right size.

Invariance under conjugation is well known, so we are going to study the effect (on the
matrix Jαφ − I) of multiplying a braid β from Bn by σn or by σ−1

n on the right. Denote Jαφ
by Jβ to simplify the notation.

Jβσn − I =


a11 . . .

...
. . . y 0
. . . x 0
. . . 0 1



1 . . .

...
. . . 0 0
. . . 1− t t
. . . 1 0

− I

=


a11 − 1 . . .

...
. . . y − yt yt
. . . x− xt− 1 xt

0 . . . 1 −1

 .

After adding the last column to the second column from the right, we get the matrix
a11 − 1 . . .

...
. . . y yt
. . . x− 1 xt

0 . . . 0 −1

 .

Thus, det(Jβσn − I) = −det(Jβ − I), so det(Jβ − I) and det(Jβσn − I) generate the same
ideal of Z[t±1]. Also, chains of the elementary ideals of the matrices (Jβ − I) and (Jβσn − I)
are the same since the latter matrix can be obtained from the former by a sequence of
elementary operations, see Section 2.4.

Now we compare the matrices Jβ − I and Jβσ−1
n

− I.
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Jβσ−1
n

− I =


a11 . . .

...
. . . y 0
. . . x 0
. . . 0 1



1 . . .

...
. . . 0 0
. . . 0 1
. . . t−1 1− t−1

− I =


a11 . . .

...
. . . 0 y
. . . 0 x

0 . . . t−1 1− t−1

− I

=


a11 − 1 . . .

...
. . . 0 y
. . . −1 x

0 . . . t−1 −t−1

 .

After adding the second column from the right to the rightmost column and then switching
the last two columns, we get the matrix

a11 − 1 . . .
...

. . . y 0
. . . x− 1 −1

0 . . . 0 −t−1

. We see that det(Jβσ−1
n

− I) = t−1 det(Jβ− I). Also, chains

of the elementary ideals of the matrices (Jβ−I) and (Jβσ−1
n

−I) are the same since the latter
matrix can be obtained from the former by a sequence of elementary operations, see Section
2.4.

4. Can Burau matrices be used to show that the right and left trefoil
knots are not isotopic?

It is a common belief that Alexander matrices, being obtained from presentations of the
fundamental group of a knot, cannot be used to distinguish two knots with isomorphic
fundamental groups. However, “invariance under isomorphisms” is typically established (see
e.g. [6, Chapter 7.4]) as invariance under Tietze transformations.

On the other hand, Markov moves, informally speaking, form a relatively small subset of
the set of all Tietze transformations, and this is why our approach in Section 3.1 allows for
a more delicate analysis.

Specifically, let us illustrate our point using the example of the right and left trefoil knots.
The braid corresponding to the right trefoil knot is β = σ3

1, and the corresponding matrix
Jβ − I is (

−t3 + t2 − t t3 − t2 + t
t2 − t+ 1 −t2 + t− 1

)
.

On the other hand, the braid corresponding to the left trefoil knot is β′ = σ−3
1 , and the

corresponding matrix Jβ′ − I is(
−t−2 + t−1 − 1 t−2 − t−1 + 1
t−3 − t−2 + t−1 −t−3 + t−2 − t−1

)
.

It seems plausible that no sequence of Markov moves applied to the braid β′ can entirely
eliminate monomials tk with k < 0 from the matrix Jβ′ − I. It is clear from our Section 3.1
that this is true for Markov moves of type 2 and 3 (“stabilization” and its converse), but the
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effect of the conjugation is more elusive. Note that conjugation can be done not by just any
matrix over Z[t±1], but only by Burau matrices of braids.

That said, we know that the braids σ1 and σ−1
1 produce the same knot (the unknot), and

the braids σ2
1 and σ−2

1 produce the same link (the Hopf link). All the entries of the Burau
matrix of σ−2

1 have monomials tk with k < 0, and yet there is a sequence of Markov moves
that takes σ−2

1 to σ2
1, even though the Burau matrix of σ2

1 does not have any monomials tk

with k < 0. It may therefore be useful to find an explicit sequence of Markov moves that
takes σ−2

1 to σ2
1 to try to find an algebraic reason why there is no such sequence taking σ−3

1

to σ3
1.

4.1. A group associated to an endomorphism of Fn. Wementioned above that “Markov
moves form a subset of the set of all Tietze transformations”, but Tietze transformations are
applied to a group presentation by generators and defining relations, whereas Markov moves
are applied to elements of a braid group Bn. Thus, an explanation is in order.
Let Fn be the free group of rank n with a set {x1, . . . , xn} of free generators. Let φ : Fn →

Fn be an endomorphism of Fn. Let φ(xi) = yi. Then we can associate the following group,
given by generators and defining relations, to the endomorphism φ:

Gφ = ⟨x1, . . . , xn, y1, . . . , yn | y1 = x1, . . . , yn = xn⟩.
Equivalently, Gφ = ⟨x1, . . . , xn, y1, . . . , yn | x−1

1 y1, . . . , x
−1
n yn⟩. This group does not have a

special name, to the best of our knowledge. It should not be confused with the mapping
torus of φ, see e.g. [10].

The Alexander matrix A (see e.g. [6, Chapter 7.3]) of the latter presentation of Gφ can be
obtained from the matrix Jφ by multiplying each entry in row i by x−1

i (on the left) and then
subtracting the diagonal matrix with x−1

i in the (i, i)th position. Thus, after applying the
abelianization map α : xi → t, we get Aα = t−1(Jαφ − I). Therefore, the chain of elementary
ideals of the matrix Aα is the same as that of the matrix (Jαφ − I).
Tietze transformations applied to the presentation of the group Gφ yield elementary op-

erations on rows and columns of the matrix Aα, just as Markov moves yield elementary
operations on rows and columns of the matrix (Jαφ − I). However, since Markov moves of
type (1) are just conjugations, not arbitrary isomorphisms, their effect on the matrix (Jαφ−I)
can be controlled better (at least in theory).

5. Wada’s representation of braid groups and the corresponding knot
invariants

Wada [15] found several other representations of the braid group Bn in the group Aut(Fn);
these were later shown to be faithful [14].

Of interest to us in this paper is the following Wada’s representation. In this representa-
tion, the automorphism σ̂i corresponding to the braid generator σi, takes xi to x

2
ixi+1, xi+1

to x−1
i+1x

−1
i xi+1, and fixes all other generators xk.

Again, the corresponding Jacobian matrix Jσ̂i is “mostly” the n× n identity matrix, with
the exception of a 2 × 2 cell whose main diagonal is part of the main diagonal of Jφ, and
this cell looks like this: (

1 + xi x2i
−x−1

i+1x
−1
i −x−1

i+1 + x−1
i+1x

−1
i

)
.
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Here defining the abelianization homomorphism α to satisfy the condition Jψαφ = Jαφ for all
φ, ψ in the image of Wada’s representation is a little more tricky. It can be defined as follows.
If i ≥ 1 is odd, then α(xi) = t; otherwise, α(xi) = t−1. Then the corresponding 2× 2 cell in
Jαφ will look like this if i is odd:(

1 + t t2

−1 1− t

)
. The inverse of this cell is

(
1− t −t2
1 1 + t

)
.

If i is even, the cell will look like this:(
1 + t−1 t−2

−1 1− t−1

)
. The inverse of this cell is

(
1− t−1 −t−2

1 1 + t−1

)
.

Denote the matrix Jαφ corresponding to a braid β by just Jβ. We are now going to see the
effect of Markov moves applied to the braid β on the matrix (Jβ − I). First, let us assume
that β is multiplied by σn with an odd n.

Jβσn − I =


a11 . . .

...
. . . y 0
. . . x 0
. . . 0 1



1 . . .

...
. . . 0 0
. . . 1 + t t2

. . . −1 1− t

− I =


a11 . . .

...
. . . y(1 + t) yt2

. . . x(1 + t) xt2

0 . . . −1 1− t

− I

=


a11 − 1 . . .

...
. . . y(1 + t) yt2

. . . x(1 + t)− 1 xt2

0 . . . −1 −t

 .

Now we add the last row multiplied by xt to the second row from the bottom, and
then add the last row multiplied by yt to the third row from the bottom. This gives
a11 − 1 . . .

...
. . . y 0
. . . x− 1 0

0 . . . −1 −t

. Finally, we multiply the rightmost column by −t−1 and add it

to the second column from the right to get


a11 − 1 . . .

...
. . . y 0
. . . x− 1 0

0 . . . 0 −t

.

We see that det(Jβσn − I) = −t det(Jβ − I). Also, chains of the elementary ideals of the
matrices (Jβ − I) and (Jβσn − I) are the same since the latter matrix can be obtained from
the former by a sequence of elementary operations, see Section 2.4.

Now we compare the matrices Jβ − I and Jβσ−1
n

− I.
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Jβσ−1
n

− I =


a11 . . .

...
. . . y 0
. . . x 0
. . . 0 1



1 . . .

...
. . . 0 0
. . . 1− t −t2
. . . 1 1 + t

− I =


a11 . . .

...
. . . y(1− t) −yt2
. . . x(1− t) −xt2

0 . . . 1 1 + t

− I

=


a11 − 1 . . .

...
. . . y(1− t) −yt2
. . . x(1− t)− 1 −xt2

0 . . . 1 t

 .

Now we add the last row multiplied by xt to the second row from the bottom, and
then add the last row multiplied by yt to the third row from the bottom. This gives
a11 − 1 . . .

...
. . . y 0
. . . x− 1 0

0 . . . 1 t

. Finally, we multiply the rightmost column by −t−1 and add

it to the second column from the right to get


a11 − 1 . . .

...
. . . y 0
. . . x− 1 0

0 . . . 0 t

.

We see that det(Jβσ−1
n

− I) = t det(Jβ − I). Also, chains of the elementary ideals of the
matrices (Jβ − I) and (Jβσ−1

n
− I) are the same since the latter matrix can be obtained from

the former by a sequence of elementary operations, see Section 2.4.
This completes the case where n is odd. The case where n is even is treated similarly since

it amounts to just replacing t by t−1 in the above.

5.1. Wada’s polynomials. Invariants coming from Wada’s representation are ideals Ek of
the Laurent polynomial ring Z[t±1] generated by all (n− k)× (n− k) minors of the relevant
n × n matrix Jαφ − I. If the n × n minor (i.e., the determinant) of the matrix Jαφ − I is 0,
then we consider (n− 1)× (n− 1) minors, etc.
The polynomial that generates nonzero Ek with the smallest k ≥ 0 is what we call the

Wada polynomial of the relevant knot or link. To avoid ambiguity, we normalize Wada
polynomials as follows: (1) the polynomial should not contain any negative exponents on t;
(2) the constant term should not be 0; (3) the coefficient at the highest degree monomial
should be positive. For example, when we normalize the polynomial t−2− 1− t, we multiply
it by t2, change the sign and get t3 + t2 − 1.

6. Examples

Here we give examples of Wada polynomials of some simple knots and links. We also
compare them to Alexander polynomials.
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6.1. The unknot. The braid that corresponds to the unknot is β = σ1, and the correspond-
ing matrix Jβ − I is (

t t2

−1 −t

)
.

The determinant of this matrix is 0, so we look at the g.c.d. of 1 × 1 minors, and this is
equal to 1, which is the same as the Alexander polynomial of the unknot.

6.2. The Hopf link. The braid that corresponds to the Hopf link is β = σ2
1, and the

corresponding matrix Jβ − I is (
2t 2t2

−2 −2t

)
.

The determinant of this matrix is 0, so we look at the g.c.d. of 1 × 1 minors, and this
is equal to 2. This is the Wada polynomial of the Hopf link. Note that the Alexander
polynomial of the Hopf link is 1− t.

6.3. The trefoil knot. The braid that corresponds to the (right) trefoil knot is β = σ3
1,

and the corresponding matrix Jβ − I is(
3t 3t2

−3 −3t

)
.

Again, we compute the g.c.d. of 1 × 1 minors, and this is equal to 3. This is the Wada
polynomial of the trefoil knot. Note that the Alexander polynomial of the trefoil knot is
1− t+ t2.

6.4. (2, k) torus knots. The computation of the matrix Jβ easily generalizes by induction
to knots (or links) corresponding to the braids σk1 . If k ≥ 3 is odd, this gives (2, k) torus
knots. If k ≥ 2 is even, we have (2, k) torus links. In either case, the Wada polynomial is

equal to k. The Alexander polynomial is 1+tk

1+t
= 1− t+ t2 − . . .+ (−1)k−1tk−1.

6.5. The figure eight knot. The braid that corresponds to the figure eight knot is β =
(σ1σ

−1
2 )2, and the corresponding matrix Jβ − I is 3t 3t2 − 4t −4

−3 + t−1 5− 3t− 3t−1 −3t−2 + 4t−1

−1 3− t 3t−1

 .

The determinant of this matrix is 0, and the g.c.d. of all 2× 2 minors is 5, so this is the
Wada polynomial of the figure eight knot. The Alexander polynomial of the figure eight
knot is t2 − 3t+ 1.

6.6. The square knot. The square knot is a composition of two copies of the right trefoil
knot. The corresponding braid is β = σ3

1σ
3
2, and the corresponding matrix Jβ − I is 3t 9t+ 3t2 9

−3 3t−1 − 3t− 9 3t−2 − 9t−1

0 −3 −3t−1

 .
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The determinant of this matrix is 0, and the g.c.d. of all 2 × 2 minors is 9, so this is
the Wada polynomial of the square knot. The Alexander polynomial of the square knot is
(1− t+ t2)2.

6.7. Granny’s knot. Granny’s knot is a composition of the right and left trefoil knots. The
corresponding braid is β = σ3

1σ
−3
2 , and the corresponding matrix Jβ − I is 3t −9t+ 3t2 −9

−3 −3t−1 − 3t+ 9 −3t−2 + 9t−1

0 3 3t−1

 .

The determinant of this matrix is 0, and the g.c.d. of all 2× 2 minors is 9, so this is the
Wada polynomial of granny’s knot, the same as that of the square knot. The Alexander
polynomial of granny’s knot is (1− t+ t2)2, the same as that of the square knot.

The above examples make it appear likely that the following conjecture holds:

Conjecture 1. The Wada polynomial is the specialization of the Alexander polynomial at
t = −1.

7. Supplement: a representation by matrices over Z[s±1, t±1]

In this section, we point out a representation of braid groups Bn by n×n matrices that is
not in line with the main theme of the present paper (since it does not come from representing
braid groups by automorphisms). Like other representations by n×n matrices considered in
this paper, it is “local” in the sense that each braid generator σi is represented by an n× n
matrix that differs from the identity matrix just by a 2× 2 cell in the right place along the
main diagonal.

We note, in passing, that although braid groups are known to be linear [2], [8], it is still
unknown whether or not they have a faithful representation by matrices over Q. If they
do, this would imply, in particular, that the word problem in the group Bn is solvable in
quasilinear time, see [11].

The representation we are talking about appears in [12] (also see references therein). In
this case, the 2× 2 cell mentioned above is:(

1− st t
s 0

)
.

The Burau representation is the specialization of this representation at s = 1.
Denote by Mβ the matrix (over Z[s±1, t±1]) that corresponds to the braid β under this

representation.
It can be shown the same way this was done in Section 3.1 that the chain of the elementary

ideals (of the ring Z[s±1, t±1]) of the matrix (Mβ − I) is invariant under Markov moves, and
therefore one can get the corresponding knot/link invariants this way. The ring Z[s±1, t±1] is
not a principal ideal domain, so there are ideals that are not generated by a single polynomial.
However, for ideals that correspond to braid words under the above representation this seems
to be the case. Moreover, if one denotes the Alexander polynomial that corresponds to a
braid β by ALβ(t), then the “leading” invariant corresponding to our representation of the
same braid β seems to be ALβ(st). For example, the “leading” invariant of the Hopf link
will be the ideal of Z[s±1, t±1] generated by the polynomial 1 − st, whereas the “leading”
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invariant of the trefoil knot (both left and right) will be the ideal generated by the polynomial
1− st+ s2t2.

Therefore, the above representation does not seem to yield new invariants of knots/links.
However, it may be of interest for a different reason. The Burau representation of the braid
group Bn is known not to be faithful if n ≥ 5 [1] and faithful if n = 3 [9]. The kernel of the
representation in this section cannot be larger than that of the Burau representation since
the Burau representation is a specialization of it. Whether or not it is strictly smaller (or
even trivial) is an interesting question.
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