
REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

ALEXANDER DEMIN, ALEXEY OVCHINNIKOV, AND VLADIMIR SHPILRAIN

1. Introduction

A crucial part of most artificial intelligence systems is an adaptive network of electronic
devices. Perhaps the most popular and quickly proliferating class of such networks is the
Internet of Things.

The Internet of Things (IoT) represents one of the most significant technologies of this
century. It is a natural evolution of the Internet (of computers) to embedded and cyber-
physical systems, “things” that, while not obviously computers themselves, nevertheless have
computers inside them.

IoT is experiencing exponential growth in research and industry, but it still suffers from
privacy and security vulnerabilities. Conventional security and privacy approaches tend to
be inapplicable for IoT, mainly due to its decentralized topology and the resource-constraints
of the majority of its devices. Blockchains have been recently used to provide security and
privacy in peer-to-peer networks and artificial intelligence systems such as, for example,
smart cars, smart homes, smart cities, etc.

A blockchain can be either public or private. A typical example of a public blockchain is
bitcoin. In contrast, a private blockchain network is where the participants are known and
trusted: for example, an industry group, or a military unit, or in fact any private network,
big or small.

Originally, blockchains were created to support the bitcoin network, which is public. Im-
mutability for such a network is crucial. More recently, with the ideas of artificial intelligence
gaining momentum, private networks have taken the center stage, and this creates new chal-
lenges. In particular, it is desirable, while preserving the tampering detection property, to
allow someone with higher privileged access like a system administrator or another authority
to be able to change the data or erase (“forget”) it. A blockchain that can be changed like
this is called redactable. The need for a blockchain (even a public one!) to be redactable
is well explained by the following quote from The New York Times [6]: “That permanence
has been vital in building trust in the decentralized currencies, which are used by millions
of people. But it could severely limit blockchain’s usefulness in other areas of financial ser-
vices relied on by billions of people. By clashing with new privacy laws like the “right to
be forgotten” and by making it nearly impossible to resolve human error and mischief effi-
ciently, the blockchain’s immutability could end up being its own worst enemy.” Eliminating
redundancies and deleting outdated records is especially vital for networks (such as IoT, for
instance) of computationally limited devices.

The present paper proposes a new secure, private, and lightweight architecture for redactable
blockchains based on multivariable polynomial equations.

Earlier constructions (e.g. [1, 5, 11]) of redactable blockchains were either not practical, or
not quantum-safe, or both. While preserving the simplicity and efficiency of the construction

1



2 REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

in [11], we are going to develop new tools for constructing redactable authenticated data
structures with post-quantum security. One possible way to avoid quantum attacks based on
solving the hidden subgroup problem (including the attacks in [15]) is not to use one-way
functions that utilize, in an essential way, one or another (semi)group structure. In our
proposal, inverting the proposed one-way function means solving a polynomial equation (or
a system of polynomial equations) in more than one variable. This is presently considered
quantum-safe, i.e., there is no known quantum algorithm that could solve this problem
efficiently if parameters are chosen wisely.

2. Background

Our approach in this proposal is focused on private blockchains. It is quite different from
[1, 5, 14] and other methods and is transparent and easily implementable.

On a high level, our method bares some similarity with the construction in [11] that was
based on the computational hardness of the RSA problem and therefore was not quantum-
safe, whereas in this paper we aim at quantum-safe constructions. Still, here we first briefly
describe the construction from [11] to give a background and put things in perspective.

There are several possible structures of a redactable blockchain. Our general method
should work with any known structure, but to make the exposition as clear as possible we
choose a very simple structure as follows. Each block Bi will have 3 parts: a permanent prefix
Pi, the actual content Ci, and a redactable suffix Xi. There is also a function (e.g. a hash
function) hi = H(Pi, Ci), where H is a public (hash) function, and a public one-way function
F such that F (hi, Xi) = Pi+1. To make such a blockchain redactable, a central authority
should have a private key that would allow for replacing Ci with an arbitrary C ′

i of his/her
choice, so that upon a suitable selection of the new suffix X ′

i, the equality F (h′
i, X

′
i) = Pi+1

would still hold.

An RSA-based construction. Now we briefly sketch the construction from [11].

Public information:

• a large integer n, which is a product of two large primes
• a hash function H, e.g. SHA-512. (We emphasize again that our method can be
used with any reasonable hash function, so the reader can replace SHA-512 here with
his/her favorite hash function.)

Private information:

• prime factors of n = pq. These p and q should be safe primes, as in modern imple-
mentations of RSA. A safe prime is of the form 2r + 1, where r is another prime [9].

Block structure. In each blockBi, there is a prefix Pi, the actual content Ci (e.g. a transaction
description), and a suffix Xi, which is a nonzero integer modulo n. We also want Xi not to
have order 2, i.e., X2

i ̸= 1 (mod n). This will ensure that Xi does not have a small order
since p and q are safe primes, so if the order of an element of the multiplicative group Z∗

pq

is not 2, then it is large. Thus, whoever builds a block Bi, selects Xi at random on integers
between 1 and n − 1 and then checks if X2

i ̸= 1 (mod n). If X2
i = 1 (mod n), random

selection of Xi is repeated. Once a proper Xi is selected, a public hash function H (e. g.
SHA-256) is applied to concatenation of Pi and Ci to produce hi = H(Pi, Ci), and hi is then



REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS 3

converted to an integer di modulo n. The prefix Pi+1 of the next block is then computed as
Pi+1 = (Xi)

di (mod n).

Private redactability. Now suppose the central authority, Alice, who is in possession of the
private key, wants to change the content of a block Bi from Ci to C ′

i but does not want to
change any other block. Then Alice computes the hash h′

i = H(Pi, C
′
i) and converts it to an

integer d′i modulo n. The number d′i should be relatively prime to ϕ(n), the Euler function
of n. If it is not, then Alice should use a padding to have d′i relatively prime to ϕ(n). Once

it is, Alice finds the inverse e′i of d
′
i modulo ϕ(n). Then she computes X ′

i = P
e′i
i+1 (mod n).

The integrity check now gives:

(X ′
i)

d′i =
(
P

e′i
i+1

)d′i
= Pi+1 (mod n)

because e′id
′
i = 1 (mod ϕ(n)) and (Pi+1)

ϕ(n) = 1 (mod n).

Public immutability. As can be seen from the “Block structure” paragraph, a party who
would like to change the content of a single block, must essentially solve the RSA problem:
recover X from n, Xd (mod n), and d, where d is relatively prime to ϕ(n). This is considered
computationally infeasible for an appropriate choice of n and a random d, 0 < d < n.

3. Basic construction

Now we describe an integrity condition for blockchains that would involve quantum-safe
one-way functions with trapdoor. In this section, to illustrate the idea, we first describe a
basic version of the construction. The basic version is susceptible to several attacks. Later
in the text (Section 5), we propose a construction that is resilient to those attacks.

Recall that Pi denotes the prefix of the block Bi. Prefixes are immutable, i.e., they cannot
be changed by anybody. We do not go into details here on how this immutability can be
arranged; literature on blockchains is awash with that. Then, Ci denotes the content of the
block Bi; this is the crucial part of a block where meaningful information is stored. Finally,
Si denotes the suffix of the block Bi; this is an auxiliary part that makes it possible for a
central authority to change the content Ci without violating the integrity condition.
We are assuming that all Ci, Si, and Pi are univariate polynomials of degree d with

coefficients in Zn for a fixed large prime n. We assume that d < n. Needless to say, any
content Ci can be encoded this way if n is large enough, say several hundred bits.

A crucial part of any blockchain (redactable or not) is the integrity condition. In our case,
the integrity condition is of the following form:

F (Pi(tj), Ci(tj), Si(tj)) = Pi+1(tj), j = 0, . . . , d,

where F is a public polynomial and t0, . . . , td are public distinct integers modulo n.
A trapdoor (i.e., a secret known only to a central authority) is a presentation of the

polynomial F in the form

F (x, y, z) = G(x,H(x, y)− z),

where G(x, y) and H(x, y) are private two-variable polynomials.
To change the content Ci to C ′

i while preserving the integrity condition, it is sufficient to
find a new suffix S ′

i such that H(Pi, Ci)− Si = H(Pi, C
′
i)− S ′

i. Solving this equation for S ′
i

gives S ′
i = H(Pi, C

′
i)−H(Pi, Ci) + Si.



4 REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

Thus, whoever knows the function H can change Ci to any other content C ′
i without

violating the integrity condition. Note that any Ĝ, Ĥ that satisfy the integrity condition can
be used for this purpose (with Ĝ, Ĥ not necessarily the same as the secret G,H).

4. Possible attacks on the basic construction

Now let us look at what an unauthorized party can try to do to modify Ci to some C ′
i.

There are several possibilities:

Attack 1. Solve the polynomial equation F (Pi, C
′
i, X) = Pi+1 for X where X is a polynomial

of degree d with unknown coefficients from Zn. Then this X can be a new suffix of
the block Bi. This gives rise to a square polynomial system in the coefficients of X.
Solving such a system is a hard problem in general, but perhaps for some special
polynomials it may turn out to be easy.

Attack 2. Recover the secret polynomial H(x, y). The intruder can attempt to present H(x, y)
as a sum of monomials (with the degree bounded by the degree of the polynomial F )
with unknown coefficients. Then the equation F (Pi, C

′
i, S

′
i) = Pi+1 would translate

into a system of polynomial equations in these unknown coefficients. These equations
are not linear, so solving them (even over Zp for a prime p) requires Gröbner basis
techniques as in [7, 4].

Attack 3. Find a functional decomposition of F (x, y, z). The algorithm by Kozen and Lan-
dau [13] is efficient at finding compositions of univariate polynomials over commuta-
tive rings. The algorithm can be used in our setting by considering the multivariate
polynomial F (x, y, z) as a univariate polynomial in one of the variables x, y, z. An
alternative approach [8], which has polynomial complexity in case the degrees are
fixed, is to find a multivariate function decomposition of F (x, y, z). In our case,
one could construct the secret G(x, y), H(x, y) of arbitrarily large degrees, hence this
algorithm would likely be inefficient.

As the experiments in Section 7 show, the basic construction from Section 3 is susceptible
to each of these attacks.

5. Advanced quantum-safe construction

Now we propose a construction (an integrity condition and a trapdoor) that is not vul-
nerable to previously mentioned attacks.

Let F (x, y, z) be a three-variable polynomial with coefficients given by integers mod-
ulo n. Introduce new indeterminates Ā = (A0, . . . , Ad), and similarly for B̄, C̄, D̄. Let

P̂i(t), Ĉi(t), Ŝi(t), P̂i+1(t) be univariate polynomials of degree d defined as follows:

P̂i(t) = A0 + . . .+ tdAd, Ĉi(t) = B0 + . . .+ tdBd,

Ŝi(t) = C0 + . . .+ tdCd, P̂i+1(t) = D0 + . . .+ tdDd.

Note that if one specializes Ā, B̄, C̄, D̄ to some particular numbers, then P̂i(t), Ĉi(t), Ŝi(t), P̂i+1(t)
become concrete prefix, content, and suffix, that is, Pi, Ci, Si, Pi+1. Therefore, an integrity
condition on Pi, Ci, Si, Pi+1 can be formulated as a condition (equation) on Ā, B̄, C̄, D̄.



REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS 5

The advanced integrity condition is a system of (fully expanded) polynomial equations in
Ā, B̄, C̄, D̄:

F (P̂i(t0), Ĉi(t0), Ŝi(t0)) = P̂i+1(t0),

. . .

F (P̂i(td), Ĉi(td), Ŝi(td)) = P̂i+1(td),

where t0, . . . , td are private distinct integers modulo n. To verify the condition for some
particular choice of Pi, Ci, Si, Pi+1, one checks if the system obtained by substituting the
coefficients in Ā, B̄, C̄, D̄ is consistent.

Let us show how the public can find Pi+1 from Pi, Ci, Si. Consider the system of equations
that defines the integrity condition; the system depends on Ā, B̄, C̄, D̄. Recall that D̄ are
the coefficients of Pi+1 and note that the system is linear in D̄ by construction. Therefore,
once Ā, B̄, C̄ are specialized to particular values, the values of D̄ can be obtained by solving
a square linear system with d+ 1 equations.

A trapdoor is similar to that in the basic construction. Specifically, a trapdoor is a
presentation of the polynomial F (x, y, z) in the form

F (x, y, z) = G(x,H(x, y)− z),

where G(x, y) and H(x, y) are private two-variable polynomials. To change the content Ci

to C ′
i while preserving the integrity condition, it is sufficient to find a new suffix S ′

i such
that H(Pi, Ci) − Si = H(Pi, C

′
i) − S ′

i. Solving this equation for S ′
i gives S ′

i = H(Pi, C
′
i) −

H(Pi, Ci) + Si.
Compared to the basic construction in Section 3, in the construction in this section the

polynomial F (x, y, z) is private. This makes direct application of Attack 2 and Attack 3
impossible. Additionally, as we shall see, since F (x, y, z) is private, it is not possible to use
shortcuts in the computation of Gröbner bases in Attack 1.

Example. Calculations in this example are performed modulo n = 11587. Let the private
polynomials G(x, y), H(x, y) be

G(x, y) = xy2 + x+ y + 3,

H(x, y) = xy + 5.

Then the private F (x, y, z) is

F (x, y, z) = x3y2 − 2x2yz + 10x2y + xy + xz2 − 10xz + 26x− z + 8.

Let d = 2. Then Ā = (A0, A1, A2), B̄ = (B0, B1, B2), C̄ = (C0, C1, C2), D̄ = (D0, D1, D2).
We therefore have

P̂i(t) = A0 + A1t+ A2t
2 Ĉi(t) = B0 +B1t+B2t

2

Ŝi(t) = C0 + C1t+ C2t
2 P̂i+1(t) = D0 +D1t+D2t

2

Let t0, t1, t2 = 1, 2, 3, respectively. To obtain an integrity condition for the advanced
construction, we consider the following system of equations:

F (P̂i(t0), Ĉi(t0), Ŝi(t0)) = P̂i+1(t0),

F (P̂i(t1), Ĉi(t1), Ŝi(t1)) = P̂i+1(t1),

F (P̂i(t2), Ĉi(t2), Ŝi(t2)) = P̂i+1(t2).



6 REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

By expanding the terms, we obtain equations that depend only on Ā, B̄, C̄, D̄; these equations
give us the public integrity condition:

0 =A2
0 + 2A0A1 +A2

1 + 2A0A2 + 2A1A2 +A2
2 + 11585A0C0 + 11585A1C0 + 11585A2C0+

C2
0 + 11585A0C1 + 11585A1C1 + 11585A2C1 + 2C0C1 + C2

1 + 11585A0C2 + 11585A1C2+

11585A2C2 + 2C0C2 + 2C1C2 + C2
2 + 11A0 + 11A1 + 11A2 + 11577C0 + 11577C1 + 11577C2+

11586D0 + 11586D1 + 11586D2 + 28,

0 =A2
0 + 4A0A1 + 4A2

1 + 8A0A2 + 16A1A2 + 16A2
2 + 11585A0C0 + 11583A1C0 + 11579A2C0+

C2
0 + 11583A0C1 + 11579A1C1 + 11571A2C1 + 4C0C1 + 4C2

1 + 11579A0C2 + 11571A1C2+

11555A2C2 + 8C0C2 + 16C1C2 + 16C2
2 + 11A0 + 22A1 + 44A2 + 11577C0 + 11567C1 + 11547C2+

11586D0 + 11585D1 + 11583D2 + 28,

0 =A2
0 + 6A0A1 + 9A2

1 + 18A0A2 + 54A1A2 + 81A2
2 + 11585A0C0 + 11581A1C0 + 11569A2C0+

C2
0 + 11581A0C1 + 11569A1C1 + 11533A2C1 + 6C0C1 + 9C2

1 + 11569A0C2 + 11533A1C2+

11425A2C2 + 18C0C2 + 54C1C2 + 81C2
2 + 11A0 + 33A1 + 99A2 + 11577C0 + 11557C1 + 11497C2+

11586D0 + 11584D1 + 11578D2 + 28.

Now suppose the public would like to check if the integrity condition holds for the following
block:

Pi(t) = 6533 + 9560t+ 2512t2

Ci(t) = 8147 + 6463t+ 2498t2

Si(t) = 3507 + 5721t+ 3086t2

Pi+1(t) = 6240 + 10673t+ 2184t2

To perform the check, one makes the assignment

(A0, A1, A2) := (6533, 9560, 2512)
(B0, B1, B2) := (8147, 6463, 2498)
(C0, C1, C2) := (3507, 5721, 3086)
(D0, D1, D2) := (6240, 10673, 2184)

and checks if the system of equations in the integrity condition is consistent. In this example,
all three equations become 0 = 0, and one concludes that the integrity condition is satisfied
for this block.

Using this example, let us show how the public can construct Pi+1(t) from the knowledge
of Pi(t), Ci(t), Si(t). To do this, one makes the assignment

(A0, A1, A2) := (6533, 9560, 2512)
(B0, B1, B2) := (8147, 6463, 2498)
(C0, C1, C2) := (3507, 5721, 3086)

and the system of equations in the integrity condition becomes a linear system in D2, D1, D0:

0 = 11586D0 + 11586D1 + 11586D2 + 7510
0 = 11586D0 + 11585D1 + 11583D2 + 2142
0 = 11586D0 + 11584D1 + 11578D2 + 9254.

Solving this system, one obtains (D0, D1, D2) = (6240, 10673, 2184), as expected.



REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS 7

6. Suggested parameters and block size

Let d1, d2, d3, d4 ∈ N. Let

G(x, y) =

d1∑
i=0

d2∑
j=0

ai,jx
iyj and H(x, y) =

d3∑
i=0

d4∑
j=0

bi,jx
iyj,

where ai,j are integers modulo n for i = 0, . . . , d1 and j = 0, . . . , d2, and bi,j are integers
modulo n for i = 0, . . . , d3 and j = 0, . . . , d4.

The suggested values of parameters are: n is a prime of size about 20 bits, d1 = d2 = d3 =
d4 = 2, d = 50. With these values of d1, d2, d3, d4, d, performing the proposed attacks seems
impossible in practice, as we shall see in the experiments, Section 7.

The values of ai,j can be chosen as random nonzero integers modulo n for i = 0, . . . , d1
and j = 0, . . . , d2, and similarly for bi,j for i = 0, . . . , d3 and j = 0, . . . , d4.
With the suggested parameter values the size of the prefixes, contents, and suffixes, which

is roughly equal to (d+ 1) log n, is about 1000 bits.

7. Experimental results

In this section, we show how the attacks on the basic construction may be successful but
turn out to be unsuccessful when used against the advanced quantum-safe construction.

Experiments in this project were performed on Intel© i9-13900 processor with 50 GB of
memory using 24 cores. As the main platforms, we used Maple 2024 [2], and two Julia
packages: Groebner.jl 0.8.3 [4] and AlgebraicSolving.jl 0.8.2 [3]. We measured memory
consumption using the time command. The code of our experiments is available on GitHub
[10].

7.1. Attack 1.

7.1.1. Attack on the basic construction. Fix a prime n. Let d ∈ N, and let Pi(t), Ci(t), Si(t), Pi+1(t)
be univariate polynomials of degree d with integer coefficients modulo n. Assume that d < n.
Let t0, . . . , td be distinct integers modulo n.

The integrity condition is:

F (Pi(tj), Ci(tj), Si(tj)) = Pi+1(tj), j = 0, . . . , d.

To change the content from Ci(t) to C ′
i(t), one needs to find a suffix S ′

i(t) that satisfies

F (Pi(tj), C
′
i(tj), S

′
i(tj)) = Pi+1(tj), j = 0, . . . , d.

One option is to search for a solution in the form of a polynomial with undetermined

coefficients, Ŝ ′
i(t) =

∑d
i=0Ait

i (the so-called ansatz polynomial), where Ā = (A0, . . . , Ad) are
the new indeterminates:

F (Pi(tj), C
′
i(tj), Ŝ

′
i(tj)) = Pi+1(tj), j = 0, . . . , d.

This yields a system of d+ 1 polynomial equations in d+ 1 unknowns.
The computational hardness of solving such a system depends on the choice of secret

polynomials. Let d1, d2, d3, d4 ∈ N. Let the secret polynomials be

G(x, y) =

d1∑
i=0

d2∑
j=0

ai,jx
iyj and H(x, y) =

d3∑
i=0

d4∑
j=0

bi,jx
iyj,



8 REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

Table 1. The memory consumption of a Gröbner basis solver for the square
polynomial system for basic construction in Attack 1. OOM stands for out of
memory (> 50 GB).

d
4 5 6 7 8 9

d
2

3 0.7 GB 0.7 GB 0.8 GB 2.0 GB 10.3 GB OOM
4 0.7 GB 1.1 GB 6.4 GB OOM - -
5 0.9 GB 5.0 GB OOM - - -
6 1.8 GB 28.5 GB - - - -
7 4.6 GB OOM - - - -
8 12.3 GB - - - - -
9 33.0 GB - - - - -
10 OOM - - - - -

where ai,j are integers modulo n for i = 0, . . . , d1 and j = 0, . . . , d2, and bi,j are integers
modulo n for i = 0, . . . , d3 and j = 0, . . . , d4.

The degrees d1, d3, d4 affect only the size of the coefficients that are taken modulo n,
hence d1, d3, d4 do not affect the computational hardness of solving the system. We fix
d1 = d3 = d4 = 2. The coefficients of G(x, y) and H(x, y) can be selected from a subset
of integers modulo n, which typically produces a zero-dimensional system of polynomial
equations.

It appears that the number of solutions of the system (in an algebraic closure of the ground
field) is dd+1

2 , which coincides with the Bézout bound. The bit complexity of Gröbner bases
for zero-dimensional systems is (DN)O(1), where D is the degree of polynomials and N is the
number of variables (see [12] and references therein). By the Bézout theorem, this upper
bound is essentially sharp. Since the number of solutions equals the bound in the Bézout
theorem, we expect that the above complexity is attained for our systems.

To assess the computational hardness of solving a system of polynomial equations experi-
mentally, we use Gröbner bases to solve particular instances of our system. We fix n = 11587
and pick the coefficients of G(x, y) and H(x, y) as random integers in the range from 0 to
n − 1. In Table 1, we list the memory consumption of Gröbner basis computation for dif-
ferent d2, d. We do not report the running times since they are qualitatively similar to the
memory consumption. We used the groebner command in the Julia package Groebner.jl.
We observe that incrementing either d2 or d by 1 roughly doubles the memory consumption.
To test a wider selection of algorithms and implementations, we repeated the experiments

using two other software packages: Maple (that, as far as we know, uses the F4 algorithm),
and AlgebraicSolving.jl, which has a top-of-the-line implementation of a signature-based
algorithm. These experiments led to similar conclusions.

While experiments suggest that solving the above system is hard, a critical issue of the
basic construction is the possibility to produce arbitrarily many more equations by special-
izing the integrity condition at different points. Let ℓ ∈ N with ℓ < n, such that d < ℓ. Let
t0, . . . , tℓ be distinct integers modulo n. Consider the following (overdetermined) system:

F (Pi(tj), C
′
i(tj), Ŝ

′
i(tj)) = Pi+1(tj), j = 0, . . . , ℓ.



REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS 9

For ℓ = d+1, in our experiments, such system has a single solution. Taking more equations
(ℓ = 2d, 3d, . . .) significantly reduces the running time and memory consumption of the
Gröbner basis solver, which is to be expected. Thus, in practice, it is possible to solve the
system rather efficiently for the basic construction.

7.1.2. Failure of Attack 1 on the advanced construction. In case of the construction from
Section 5, the polynomial F (x, y, z) is not public. Therefore, it is impossible to produce ar-
bitrarily many polynomial equations, and one must solve a square system, which is infeasible
as we have seen before. The computational hardness of solving such a system is illustrated
in Table 1. From this table, we expect the memory consumption to roughly double when
incrementing d by 1, and, by extrapolation, solving for d > 30 would require at least 40
petabytes of memory.

We note that interpolating F (P̂i(t), Ĉi(t), Ŝi(t))− P̂i+1(t) as a polynomial in t of degree d
is impossible whenever G(x, y), H(x, y) are not linear.

7.2. Attack 2.

7.2.1. Attack on the basic construction. Fix a prime n. Let d1, d2, d3, d4 ∈ N. Let the secret
polynomials be

G(x, y) =

d1∑
i=0

d2∑
j=0

ai,jx
iyj and H(x, y) =

d3∑
i=0

d4∑
j=0

bi,jx
iyj,

where ai,j are integers modulo n for i = 0, . . . , d1 and j = 0, . . . , d2, and bi,j are integers
modulo n for i = 0, . . . , d3 and j = 0, . . . , d4.

Introduce new indeterminates Ai,j for i = 0, . . . , d3 and j = 0, . . . , d4 and Bi,j for i =
0, . . . , d1 and j = 0, . . . , d2. In case d1, d2, d3, d4 are known, the polynomials G(x, y) and
H(x, y) can be recovered by constructing the ansatz polynomials

Ĝ(x, y) =

d1∑
i=0

d2∑
j=0

Bi,jx
iyj, Ĥ(x, y) =

d3∑
i=0

d4∑
j=0

Ai,jx
iyj

and solving the following system for the undetermined coefficients Ai,j, Bi,j:

F (Pi, Ci, Si) = Ĝ(Pi, Ĥ(Pi, Ci)− Si).

The dimension of such systems in all experiments we tried is 1. This can be explained by
the following symmetry in the equations: if G(x, y) and H(x, y) satisfy the equality

F (x, y, z) = G(x,H(x, y)− z),

then G(x, y − U) and H(x, y) + U satisfy it as well for any U . By normalizing one of the
secret polynomials (say, H(x, y)) to have the trailing coefficient equal to one, the system
becomes zero-dimensional in all examples that we have tested.

For example, for n = 11587, for d1 = d2 = d3 = d4 = 1, for a particular choice of secret
polynomials, one possible instance of the system of equations in the undetermined coefficients
is:

A0,1B0,1 + 842 = 0 A1,1B1,1 + 2023 = 0
11586A1,1 + 5373 = 0 A1,1B0,0 + A0,1B1,0 + A1,0 + 6818 = 0
11586A0,1 + 10712 = 0 A0,1B0,0 + A0,0 + 8216 = 0

A1,1B1,0 + 289 = 0 A1,1B0,1 + A0,1B1,1 + 986 = 0



10 REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS

The system contains trivial linear equations that are readily solved, and substituting the
solutions of linear equations into other equations would produce new linear equations, at
which point the procedure can be repeated. This example system can be solved by such
procedure. An issue with the basic construction is that it seems that this iterative procedure
can be applied for any d1 ⩾ 1, d2 ⩾ 1, d3 ⩾ 1, d4 ⩾ 1, which makes it straightforward to solve
the resulting systems.

7.2.2. Failure of Attack 2 on the advanced construction. The attack cannot be applied since
an unauthorized party has no access to F (x, y, z).

7.3. Attack 3.

7.3.1. Attack on the basic construction. Direct application of [13, Algorithm 4] to F (x, y, z)
considered as a polynomial in Q(x, z)[y] (that is, using y as the main variable) succeeds.
The output of the algorithm are G(x, y) and H(x, y), possibly normalized to have trailing
coefficients equal to zero. As we have seen, having this output is equivalent to having a
trapdoor to the construction. The complexity of the algorithm is polynomial in the degree
of F (x, y, z) in y, which makes it efficient at breaking our basic construction.

7.3.2. Failure of Attack 3 on the advanced construction. In this scenario, the polynomial
F (x, y, z) is not available publicly. Therefore, direct application of [13, Algorithm 4] is
impossible.

8. Conclusions

We proposed a new quantum-safe and lightweight construction for redactable blockchains
based on multivariate polynomial equations.

We studied several possible attacks on our scheme using various Gröbner bases computa-
tion techniques and determined that none of them is feasible against our construction.

References

1. G. Ateniese, B. Magri, D. Venturi, E. Andrade, Redactable blockchain – or – rewriting history in bitcoin
and friends, in: 2017 IEEE European Symposium on Security and Privacy, INSPEC Accession Number:
17011479. (See also https://eprint.iacr.org/2016/757.pdf)

2. L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn, J. P. May,
J. McCarron, M. B. Monagan, D. Ohashi, S. M. Vorkoetter, Maple Programming Guide, Maplesoft, a
division of Waterloo Maple Inc., 1996-2023.

3. J. Berthomieu, C. Eder, M. Safey El Din, msolve: A Library for Solving Polynomial Systems, Proceedings
of the 46th International Symposium on Symbolic and Algebraic Computation (2021), 51–58.

4. A. Demin, S. Gowda, Groebner.jl: A package for Gröbner bases computations in Julia, preprint (2024),
https://arxiv.org/abs/2304.06935.

5. D. Deuber, B. Magri, S. A. K. Thyagarajan, Redactable blockchain in the permissionless setting, in: 2019
IEEE Symposium on Security and Privacy, 124–138. (See also https://arxiv.org/abs/1901.03206)

6. Downside of bitcoin: A ledger that can’t be corrected, The New York Times, 2016. https://tinyurl.
com/ydxjlf9e

7. J.-C. Faugére, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra, 139
(1999) 61–88.

8. J.-C. Faugére, An efficient algorithm for decomposing multivariate polynomials and its applications to
cryptography, J. Symb. Comput. 44 1676–1689

9. J. von zur Gathen, I. E. Shparlinski, Generating safe primes, J. Math. Cryptol. 7 (2013), 333–365.

https://eprint.iacr.org/2016/757.pdf
https://arxiv.org/abs/2304.06935
https://arxiv.org/abs/1901.03206
https://tinyurl.com/ydxjlf9e
https://tinyurl.com/ydxjlf9e


REDACTABLE BLOCKCHAINS AND POLYNOMIAL EQUATIONS 11

10. GitHub repository, https://github.com/sumiya11/Redactable_blockchains_and_polynomial_

equations.
11. D. Grigoriev and V. Shpilrain, RSA and redactable blockchains, Int. J. Computer Math.: Computer

Systems Theory 6 (2021), 1–6.
12. A. Hashemi and D. Lazard, Sharper Complexity Bounds for Zero-dimensional Gröbner Bases and Poly-

nomial System Solving, International Journal of Algebra and Computation 21 (2011) 703–713.
13. D. Kozen, S. Landau, Polynomial decomposition algorithms, J. Symb. Comput. 7 (1989), 445–456
14. I. Puddu, A. Dmitrienko, S. Capkun, µchain: How to forget without hard forks, preprint,

https://eprint.iacr.org/2017/106.pdf
15. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-

puter, SIAM J. Comput. 26 (1997), 1484–1509.

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108,
01307 Dresden, Germany

Email address: demin@mpi-cbg.de

Department of Mathematics, Queens College, City University of New York, Queens, NY
11367

Email address: alexey.ovchinnikov@qc.cuny.edu

Department of Mathematics, The City College of New York, New York, NY 10031
Email address: shpilrain@yahoo.com

https://github.com/sumiya11/Redactable_blockchains_and_polynomial_equations
https://github.com/sumiya11/Redactable_blockchains_and_polynomial_equations

	1. Introduction
	2. Background
	An RSA-based construction.

	3. Basic construction
	4. Possible attacks on the basic construction
	5. Advanced quantum-safe construction
	6. Suggested parameters and block size
	7. Experimental results
	7.1. Attack 1.
	7.2. Attack 2.
	7.3. Attack 3.

	8. Conclusions
	References

