
Public key exchange using semidirect product
of (semi)groups

Maggie Habeeb1, Delaram Kahrobaei2, Charalambos Koupparis3, and
Vladimir Shpilrain4

1 California University of Pennsylvania
habeeb@calu.edu ?

2 CUNY Graduate Center and City Tech, City University of New York
dkahrobaei@gc.cuny.edu ??

3 CUNY Graduate Center, City University of New York
ckoupparis@gc.cuny.edu

4 The City College of New York and CUNY Graduate Center
shpil@groups.sci.ccny.cuny.edu ? ? ?

Abstract. In this paper, we describe a brand new key exchange pro-
tocol based on a semidirect product of (semi)groups (more specifically,
on extension of a (semi)group by automorphisms), and then focus on
practical instances of this general idea. Our protocol can be based on
any group, in particular on any non-commutative group. One of its spe-
cial cases is the standard Diffie-Hellman protocol, which is based on a
cyclic group. However, when our protocol is used with a non-commutative
(semi)group, it acquires several useful features that make it compare fa-
vorably to the Diffie-Hellman protocol. Here we also suggest a particular
non-commutative semigroup (of matrices) as the platform and show that
security of the relevant protocol is based on a quite different assumption
compared to that of the standard Diffie-Hellman protocol.

1 Introduction

It is rare that the beginning of a whole new area of science can be traced back to
one particular paper. This is the case with public key cryptography; it started
with the seminal paper [2].

The simplest, and original, implementation of the protocol uses the multi-
plicative group of integers modulo p, where p is prime and g is primitive mod p.
A more general description of the protocol uses an arbitrary finite cyclic group.

? Research of Maggie Habeeb was partially supported by the NSF-LSAMP fellowship.
?? Research of Delaram Kahrobaei was partially supported by a PSC-CUNY grant

from the CUNY research foundation, as well as the City Tech foundation. Research
of Delaram Kahrobaei and Vladimir Shpilrain was also supported by the ONR (Office
of Naval Research) grant N000141210758.

? ? ? Research of Vladimir Shpilrain was partially supported by the NSF grants DMS-
0914778 and CNS-1117675.



1. Alice and Bob agree on a finite cyclic group G and a generating element g
in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (ga)b = gab.

Since ab = ba, both Alice and Bob are now in possession of the same group
element K = KA = KB which can serve as the shared secret key.

The protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper must solve the Diffie-Hellman problem (recover gab

from g, ga and gb) to obtain the shared secret key. This is currently considered
difficult for a “good” choice of parameters (see e.g. [5] for details).

There is an ongoing search for other platforms where the Diffie-Hellman or
similar key exchange could be carried out more efficiently, in particular with
public/private keys of smaller size. This search already gave rise to several inter-
esting directions, including a whole area of elliptic curve cryptography. We also
refer the reader to [6] for a survey of proposed cryptographic primitives based
on non-abelian (= non-commutative) groups. A survey of these efforts is outside
of the scope of the present paper; our goal here is to suggest a new key exchange
protocol based on extension of a (semi)group by automorphisms. Our protocol
can be based on any group, in particular on any non-commutative group. It has
some superficial resemblance to the classical Diffie-Hellman protocol, but there
are several distinctive features that, we believe, give our protocol important ad-
vantages. In particular, even though the parties do compute a large power of a
public element (as in the classical Diffie-Hellman protocol), they do not transmit
the whole result, but rather just part of it.

We also describe in this paper some particular instances of our general pro-
tocol. In particular, we suggest a non-commutative semigroup (of matrices) as
the platform and show that security of the relevant protocol is based on a quite
different assumption compared to that of the standard Diffie-Hellman protocol.

We mention another, rather different, proposal [8] of a cryptosystem based on
the semidirect product of two groups and yet another, more complex, proposal
of a key agreement based on the semidirect product of two monoids [1]. Both
these proposals are very different from ours. Also, the extended abstract [3],
despite the similarity of the title, has very little overlap with the present paper.
In particular, the key exchange protocol in Section 3 of the present paper is
brand new.

Finally, we note that the basic construction (semidirect product) we use in
this paper can be adopted, with some simple modifications, in other algebraic
systems, e.g. associative rings or Lie rings, and key exchange protocols similar
to ours can be built on those.



2 Semidirect products and extensions by automorphisms

We include this section to make the exposition more comprehensive. The reader
who is uncomfortable with group-theoretic constructions can skip to subsection
2.1.

We now recall the definition of a semidirect product:

Definition 1. Let G,H be two groups, let Aut(G) be the group of automor-
phisms of G, and let ρ : H → Aut(G) be a homomorphism. Then the semidirect
product of G and H is the set

Γ = Goρ H = {(g, h) : g ∈ G, h ∈ H}
with the group operation given by

(g, h)(g′, h′) = (gρ(h′) · g′, h · h′).
Here gρ(h′) denotes the image of g under the automorphism ρ(h′), and when we
write a product h · h′ of two morphisms, this means that h is applied first.

In this paper, we focus on a special case of this construction, where the
group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. We
give some more details about the holomorph in our Section 2.1, and in Section
3 we describe a key exchange protocol that uses (as the platform) an extension
of a group G by a cyclic group of automorphisms.

2.1 Extensions by automorphisms

A particularly simple special case of the semidirect product construction is where
the group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. Thus,
the holomorph of G, usually denoted by Hol(G), is the set of all pairs (g, φ),
where g ∈ G, φ ∈ Aut(G), with the group operation given by (g, φ) · (g′, φ′) =
(φ′(g) · g′, φ · φ′).

It is often more practical to use a subgroup of Aut(G) in this construction,
and this is exactly what we do in Section 3, where we describe a key exchange
protocol that uses (as the platform) an extension of a group G by a cyclic group
of automorphisms.

Remark 1. One can also use this construction if G is not necessarily a group,
but just a semigroup, and/or consider endomorphisms of G, not necessarily au-
tomorphisms. Then the result will be a semigroup; this is what we use in our
Section 6.

3 Key exchange protocol

In the simplest implementation of the construction described in our Section 2.1,
one can use just a cyclic subgroup (or a cyclic subsemigroup) of the group Aut(G)



(respectively, of the semigroup End(G) of endomorphisms) instead of the whole
group of automorphisms of G.

Thus, let G be a (semi)group. An element g ∈ G is chosen and made public as
well as an arbitrary automorphism φ ∈ Aut(G) (or an arbitrary endomorphism
φ ∈ End(G)). Bob chooses a private n ∈ N, while Alice chooses a private m ∈ N.
Both Alice and Bob are going to work with elements of the form (g, φr), where
g ∈ G, r ∈ N. Note that two elements of this form are multiplied as follows:
(g, φr) · (h, φs) = (φs(g) · h, φr+s).

1. Alice computes (g, φ)m = (φm−1(g) · · ·φ2(g) · φ(g) · g, φm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = φm−1(g) · · ·φ2(g) · φ(g) · g of the (semi)group G.

2. Bob computes (g, φ)n = (φn−1(g) · · ·φ2(g) ·φ(g) ·g, φn) and sends only the
first component of this pair to Alice. Thus, he sends to Alice only the
element b = φn−1(g) · · ·φ2(g) · φ(g) · g of the (semi)group G.

3. Alice computes (b, x) · (a, φm) = (φm(b) · a, x · φm). Her key is now KA =
φm(b) ·a. Note that she does not actually “compute” x ·φm because she does
not know the automorphism x = φn; recall that it was not transmitted to
her. But she does not need it to compute KA.

4. Bob computes (a, y)·(b, φn) = (φn(a)·b, y·φn). His key is now KB = φn(a)·b.
Again, Bob does not actually “compute” y · φn because he does not know
the automorphism y = φm.

5. Since (b, x) · (a, φm) = (a, y) · (b, φn) = (g, φ)m+n, we should have KA =
KB = K, the shared secret key.

Remark 2. Note that, in contrast with the “standard” Diffie-Hellman key ex-
change, correctness here is based on the equality hm · hn = hn · hm = hm+n

rather than on the equality (hm)n = (hn)m = hmn. In the “standard” Diffie-
Hellman set up, our trick would not work because, if the shared key K was just
the product of two openly transmitted elements, then anybody, including the
eavesdropper, could compute K.

4 Computational cost

From the look of transmitted elements in our protocol in Section 3, it may seem
that the parties have to compute a product of m (respectively, n) elements of
the (semi)group G. However, since the parties actually compute powers of an
element of G, they can use the “square-and-multiply” method, as in the standard
Diffie-Hellman protocol. Then there is a cost of applying an automorphism φ to
an element of G, and also of computing powers of φ. These costs depend, of
course, on a specific platform (semi)group that is used with our protocol. In our
first, “toy” example (Section 5 below), both applying an automorphism φ and
computing its powers amount to exponentiation of elements of G, which can



be done again by the “square-and-multiply” method. In our main example, in
Section 6, φ is a conjugation, so applying φ amounts to just two multiplications
of elements in G, while computing powers of φ amounts to exponentiation of two
elements of G (namely, of the conjugating element and of its inverse).

Thus, in either instantiation of our protocol considered in this paper, the cost
of computing (g, φ)n is O(log n), just as in the standard Diffie-Hellman protocol.

5 “Toy example”: multiplicative Z∗
p

As one of the simplest instantiations of our protocol, we use here the multiplica-
tive group Z∗p as the platform group G to illustrate what is going on. In selecting
a prime p, as well as private exponents m, n, one can follow the same guidelines
as in the “standard” Diffie-Hellman.

Selecting the (public) endomorphism φ of the group Z∗p amounts to selecting
yet another integer k, so that for every h ∈ Z∗p, one has φ(h) = hk. If k is
relatively prime to p− 1, then φ is actually an automorphism. Below we assume
that k > 1.

Then, for an element g ∈ Z∗p, we have:

(g, φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g, φm).

We focus on the first component of the element on the right; easy computation
shows that it is equal to gkm−1+...+k+1 = g

km−1
k−1 . Thus, if the adversary chooses

a “direct” attack, by trying to recover the private exponent m, he will have to
solve the discrete log problem twice: first to recover km−1

k−1 from g
km−1
k−1 , and then

to recover m from km. (Note that k is public since φ is public.)
On the other hand, the analog of what is called “the Diffie-Hellman problem”

would be to recover the shared key K = g
km+n−1

k−1 from the triple (g, g
km−1
k−1 , g

kn−1
k−1 ).

Since g and k are public, this is equivalent to recovering gkm+n

from the triple
(g, gkm

, gkn

), i.e., this is exactly the standard Diffie-Hellman problem.
Thus, the bottom line of this example is that the instantiation of our protocol

where the group G is Z∗p, is not really different from the standard Diffie-Hellman
protocol. In the next section, we describe a more interesting instantiation, where
the (semi)group G is non-commutative.

6 Matrices over group rings and extensions by inner
automorphisms

To begin with, we note that our general protocol in Section 3 can be used
with any non-commutative group G if φ is selected to be a non-trivial inner
automorphism, i.e., conjugation by an element which is not in the center of G.
Furthermore, it can be used with any non-commutative semigroup G as well,
as long as G has some invertible elements; these can be used to produce inner



automorphisms. A typical example of such a semigroup would be a semigroup
of matrices over some ring.

In the paper [4], the authors have employed matrices over group rings of a
(small) symmetric group as platforms for the (standard) Diffie-Hellman-like key
exchange. In this section, we use these matrix semigroups again and consider
an extension of such a semigroup by an inner automorphism to get a platform
semigroup for our protocol.

Recall that a (semi)group ring R[S] of a (semi)group S over a commutative
ring R is the set of all formal sums

∑

gi∈S

rigi

where ri ∈ R, and all but a finite number of ri are zero.
The sum of two elements in R[G] is defined by


∑

gi∈S

aigi


 +


∑

gi∈S

bigi


 =

∑

gi∈S

(ai + bi)gi.

The multiplication of two elements in R[G] is defined by using distributivity.
As we have already pointed out, if a (semi)group G is non-commutative

and has non-central invertible elements, then it always has a non-identical inner
automorphism, i.e., conjugation by an element g ∈ G such that g−1hg 6= h for
at least some h ∈ G.

Now let G be the semigroup of 3 × 3 matrices over the group ring Z7[A5],
where A5 is the alternating group on 5 elements. Here we use an extension of the
semigroup G by an inner automorphism ϕ

H
, which is conjugation by a matrix

H ∈ GL3(Z7[A5]). Thus, for any matrix M ∈ G and for any integer k ≥ 1, we
have

ϕ
H

(M) = H−1MH; ϕk
H

(M) = H−kMHk.

Now our general protocol from Section 3 is specialized in this case as follows.

1. Alice and Bob agree on public matrices M ∈ G and H ∈ GL3(Z7[A5]). Alice
selects a private positive integer m, and Bob selects a private positive integer
n.

2. Alice computes (M,ϕH )m = (H−m+1MHm−1 · · ·H−2MH2·H−1MH·M, ϕm
H

)
and sends only the first component of this pair to Bob. Thus, she sends
to Bob only the matrix

A = H−m+1MHm−1 · · ·H−2MH2 ·H−1MH ·M = H−m(HM)m.



3. Bob computes (M, ϕ
H

)n = (H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M, ϕn
H

)
and sends only the first component of this pair to Alice. Thus, he sends
to Alice only the matrix

B = H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M = H−n(HM)n.

4. Alice computes (B, x) · (A, ϕm
H

) = (ϕm
H

(B) · A, x · ϕm
H

). Her key is now
KAlice = ϕm

H
(B) ·A = H−(m+n)(HM)m+n. Note that she does not actually

“compute” x · ϕm
H

because she does not know the automorphism x = ϕn
H

;
recall that it was not transmitted to her. But she does not need it to compute
KAlice.

5. Bob computes (A, y) · (B, ϕn
H

) = (ϕn
H

(A) ·B, y ·ϕn
H

). His key is now KBob =
ϕn

H
(A) ·B. Again, Bob does not actually “compute” y · ϕn

H
because he does

not know the automorphism y = ϕm
H

.

6. Since (B, x) · (A, ϕm
H

) = (A, y) · (B, ϕn
H

) = (M, ϕ
H

)m+n, we should have
KAlice = KBob = K, the shared secret key.

7 Security assumptions and analysis

In this section, we address the question of security of the particular instantiation
of our protocol described in Section 6.

Recall that the shared secret key in the protocol of Section 6 is

K = ϕm
H

(B) ·A = ϕn
H

(A) ·B = H−(m+n)(HM)m+n.

Therefore, our security assumption here is that it is computationally hard to
retrieve the key K = H−(m+n)(HM)m+n from the quadruple
(H, M, H−m(HM)m, H−n(HM)n).

In particular, we have to take care that the matrices H and HM do not com-
mute because otherwise, K is just a product of H−m(HM)m and H−n(HM)n.

A weaker security assumption arises if an eavesdropper tries to recover a pri-
vate exponent from a transmission, i.e., to recover, say, m from H−m(HM)m.
A special case of this problem, where H = I, is the “discrete log” problem
for matrices over Z7[A5], namely: recover m from M and Mm. Even this prob-
lem appears to be hard; it was addressed in [4] in more detail. In particular,
statistical experiments show that for a random matrix M , matrices Mm are
indistinguishable from random.

In order to verify the robustness and security of our protocol, we have ex-
perimentally addressed two questions. The first question is whether or not any
information about the private exponent n is leaked from transmission. That is,
for a random exponent n, how different is the matrix (M, ϕ

H
)n from N , where

N is random? The second point that needs verification is to determine how dif-
ferent the final shared key is from a random matrix. More specifically, if Alice
and Bob choose secret integers m and n respectively, how different is the matrix
(M, ϕH )n+m from (M,ϕH )q, where q is of the same bit size are n + m.



To perform the first experimental validation we worked over M3(Z7[A5]) and
used random choices of n ∈ [1044, 1055]. We then looked at the two distributions
generated by the first component of (M, ϕ

H
)n and N , where M and N are

random matrices. We need to verify that the two generated distributions are in
fact indistinguishable. To this end we looked at the components of each matrix
and counted the frequency of occurrence of each element of A5. We repeated
this process 500 times and generated a frequency distribution table for the two
distributions.

From the table, we produced Q−Q (quantile) plots of the entries of the two
matrices: the first component of (M, ϕ

H
)n and a random matrix N . Quantile

plots are a quick graphical tool for comparing two distributions. These plots
essentially compare the cumulative distribution functions of two distributions.
If the distributions are identical, the resulting graph will be a straight line.

Fig. 1. Results for Mn vs. N



Figure 1 shows the resulting plots for this experiment. These graphs show
that the two distributions are in fact identical, therefore suggesting that no
information about a private exponent n is revealed by transmissions between
Alice and Bob.

The second experiment we carried out was similar to the first one, except in
this case we were comparing the first components of (M, ϕ

H
)n and (M, ϕ

H
)a+b,

where n, a and b are random and all of roughly the same bit size, i.e. all are
integers from [1044, 1055]. This experiment helps address the DDH (decisional
Diffie-Hellman) assumption by comparing the shared secret key to a random key
and ensuring that no information about the former is leaked. See Figure 2 for
the resulting Q − Q plots. These 9 graphs suggest that the two distributions
generated by these keys are in fact indistinguishable.

Fig. 2. Results for Mn vs. Ma+b



8 Parameters and key generation

Private exponents m and n should be of the magnitude of 2t, where t is the
security parameter, to make brute force search infeasible. Thus, m and n are
roughly t bits long.

Public matrix M is selected as a random 3 × 3 matrix over the group ring
Z7[A5], which means that each entry of M is a random element of Z7[A5]. The
latter means that each entry is a sum

∑
gi∈A5

cigi of elements of the group
A5 with coefficients ci selected uniformly randomly from Z7. Thus, although
the bit complexity of the matrix M is fairly high (9 · 3 · 60 = 1620 bits), the
procedure for sampling M is quite efficient. We want to impose one restriction on
the matrix M though. There is a trivialization (sometimes called augmentation)
homomorphism of the group ring that sends every group element to 1. This
homomorphism naturally extends to a homomorphism of the whole semigroup of
matrices. To avoid leaking any information upon applying this homomorphism,
we want the image of every entry of M to be 0. Group ring elements like that
are easy to sample: after sampling a random element

∑
gi∈A5

cigi of Z7[A5], we
select a random coefficient ci and change it, if necessary, to have

∑
i ci = 0.

Note that with this choice of M , applying the trivialization homomorphism
to any of the transmitted matrices in our protocol will produce the zero matrix,
thus not leaking any information. We also note that there are no other homo-
morphisms of the group A5 (which is a finite simple group), except for inner
automorphisms. This will prevent an eavesdropper from learning partial infor-
mation about secret keys by applying homomorphisms to transmitted matrices.

Finally, we need to sample an invertible 3× 3 matrix H over the group ring
Z7[A5]. There are several techniques for doing this; here we give a brief exposition
of one possible procedure.

We start with an already “somewhat random” matrix, for which it is easy to
compute the inverse. An example of such a matrix is a lower/upper triangular
matrix, with invertible elements on the diagonal:

U =




g1 u1 u2

0 g2 u3

0 0 g3


 .

Here gi are random elements of the group A5, and ui are random elements
of the group ring Z7[A5]. We then take a random product, with 20 factors, of
such random invertible upper and lower triangular matrices, to get our invertible
matrix H.

We note that there is always a concern (also in the standard Diffie-Hellman
protocol) about the order of a public element: if the order is too small, then a
brute force attack may be feasible. In our situation, this concern is significantly
alleviated by the fact that our transmissions are products of powers of two
different matrices rather than powers of a single matrix. Therefore, even if the
order of one of the matrices happens to be small by accident, this does not mean
that the product H−m(HM)m will go into loop of a small size. Furthermore,



since our matrix M is non-invertible, it does not have an “order”, but rather a
loop: Mr = Ms for some positive r 6= s. The matrices HM and H−m(HM)m

are non-invertible, too, so they do not have an order either, but rather a loop.
Detecting a loop is, in general, computationally much harder than computing
the order of an invertible element.

9 Conclusions

We have presented a brand new key exchange protocol based on extension of a
(semi)group by automorphisms and described some practical instances of this
general idea. Our protocol can be based on any group, in particular on any non-
commutative group. It has some superficial resemblance to the classical Diffie-
Hellman protocol, but there are several distinctive features that, we believe, give
our protocol important advantages:

• Even though the parties do compute a large power of a public element (as
in the classical Diffie-Hellman protocol), they do not transmit the whole result,
but rather just part of it.

• Since the classical Diffie-Hellman protocol is a special case of our protocol,
breaking our protocol even for any cyclic group would imply breaking the Diffie-
Hellman protocol.

• If the platform (semi)group is not commutative, then we get a new security
assumption. In the simplest case, where the automorphism used for extension
is inner, attacking a private exponent amounts to recovering an integer n from
a product g−nhn, where g, h are public elements of the platform (semi)group.
In the special case where g = 1 this boils down to recovering n from hn, with
public h (“discrete log” problem).

On the other hand, in the particular instantiation of our protocol, which is
based on a non-commutative semigroup extended by an inner automorphism,
recovering the shared secret key from public information is based on a different
security assumption than the classical Diffie-Hellman protocol is. Namely, the
assumption is that it is computationally hard to retrieve the shared secret key
K = h−(m+n)gm+n from the triple of elements (h, h−mgm, h−ngn), assuming
that g and h do not commute.

References

1. I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, Key agreement, the Algebraic
Eraser, and lightweight cryptography, Algebraic methods in cryptography, Contemp.
Math. Amer. Math. Soc. 418 (2006), 1–34.

2. W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Information Theory IT-22 (1976), 644–654.

3. M. Habeeb, D. Kahrobaei and V. Shpilrain, A public key exchange using semidirect
products of groups (extended abstract), Proceedings of the International Conference
in Symbolic Computations and Cryptography, SCC 2010, Royal Holloway, Univer-
sity of London, Egham, United Kingdom, June 2010.



4. D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using ma-
trices over group rings, Groups, Complexity, and Cryptology, to appear.
http://arxiv.org/abs/1302.1625

5. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC-Press 1996.

6. A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptography,
Birkhäuser 2008.

7. A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Non-commutative cryptography
and complexity of group-theoretic problems, Amer. Math. Soc. Surveys and Mono-
graphs, 2011.

8. S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New public key cryptosystem
using finite non-abelian groups, in: Crypto 2001, Lecture Notes Comp. Sc. 2139
(2001), 470–485.


