
Public key exchange using extensions
by endomorphisms and matrices over a

Galois field

Delaram Kahrobaei1, Ha T. Lam2, and Vladimir Shpilrain3

1 CUNY Graduate Center and City Tech, City University of New York
dkahrobaei@gc.cuny.edu
2 CUNY Graduate Center

hlam@gc.cuny.edu
3 The City College of New York and CUNY Graduate Center

shpil@groups.sci.ccny.cuny.edu

Abstract. In this paper, we describe a public key exchange protocol
based on an extension of a semigroup by automorphisms (more gener-
ally, by endomorphisms). One of its special cases is the standard Diffie-
Hellman protocol, which is based on a cyclic group. However, when our
protocol is used with a non-commutative (semi)group, it acquires sev-
eral useful features that make it compare favorably to the Diffie-Hellman
protocol. Here we suggest a couple of instantiations of our general pro-
tocol, with a non-commutative semigroup of matrices over a Galois field
as the platform and show that security of the relevant protocols is based
on quite different assumptions compared to that of the standard Diffie-
Hellman protocol. Our key exchange protocols with this platform are
quite efficient, too: with private keys of size 127 bits and public keys of
size 1016 bits, the run time is 0.03 s on a typical desktop computer.

1 Introduction

The simplest, and original, implementation of the classical Diffie-Hellman key
exchange protocol [3] uses the multiplicative group of integers modulo p, where
p is prime and g is primitive mod p. A more general description of the protocol
uses an arbitrary finite cyclic group.

1. Alice and Bob agree on a finite cyclic semigroup G and a generating element
g in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.
3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes KA = (gb)a = gba.
5. Bob computes KB = (ga)b = gab.

Since ab = ba, both Alice and Bob are now in possession of the same group
element K = KA = KB which can serve as the shared secret key.



The protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper must solve the Diffie-Hellman problem (recover gab

from g, ga and gb) to obtain the shared secret key. This is currently considered
difficult for a “good” choice of parameters (see e.g. [6] for details).

In [4], a new key exchange protocol was suggested, which has some similarity
to the Diffie-Hellman protocol, but also has some important distinctive features
that give the new protocol some important advantages. To explain the main idea
of that protocol, assume for a moment that someone would like to modify the
standard Diffie-Hellman protocol as follows:

1. Alice and Bob agree on a finite cyclic semigroup G and a generating element
g in G.

2. Alice picks a random natural number a and sends ga to Bob.
3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes KA = gb · ga = gb+a.
5. Bob computes KB = ga · gb = ga+b = KA.

It works just fine for Alice and Bob, but the problem is: anybody can compute
the shared key the same way, so this protocol is completely insecure. However,
if Alice and Bob do not transmit the whole ga (respectively, gb) but only part
of it, and the final shared key is not the whole ga+b but only part of it, then the
protocol may become secure (or at least as secure as the standard Diffie-Hellman
protocol). A particular implementation of this general idea was given in [4], where
the platform semigroup G was the semigroup of matrices over the group ring
Z7[A5], where A5 is the alternating group on 5 elements. The automorphism used
for an extension was an inner automorphism, i.e. conjugation by an invertible
matrix H.

In this paper, we use the semigroup of matrices over a Galois field of char-
acteristic 2; more specifically, over the field GF(2127). This allows us to reduce
key size and to speed up computation quite a bit by utilizing known methods of
fast computation in a field of characteristic 2. Specifically, we used the RELIC
package [2] for computations in GF(2127). See our Sections 7 and 8 for more
details on parameters and computational cost. Also, the endomorphism that we
use for extension in our Section 4 is not inner, but a composition of an inner
automorphism with the endomorphism that raises each entry of a given matrix
to the power of 4. This yields new security assumptions, see our Section 6. If
one uses just an inner automorphism and matrices over a field, then an extra
“tweak” of the protocol is needed to avoid a linear algebra attack, see Section 5.

Finally, we mention another, very different, proposal [1] of a cryptosystem
based on the semidirect product of two monoids.

2 Extensions by automorphisms or endomorphisms

A special case of the general semidirect product construction is extension by
automorphisms (or endomorphisms, if we do not require the result to be a group,
but just a semigroup). Since in this paper, we are working with semigroups (of



matrices), let us assume that G is a semigroup and ψ an endomorphism of G.
Then the extension of G by ψ is the semidirect product of G with the cyclic
semigroup generated by ψ, i.e. the set of all pairs (g, ϕ), where g ∈ G and ϕ is
a power of ψ, with the multiplication given by

(g, ϕ) · (g′, ϕ′) = (ϕ′(g) · g′, ϕ · ϕ′).

Note that when we write ϕ · ϕ′, this means that ϕ is applied first.
If G is a group and ψ is an automorphism of G, then the extension of G by

ψ is a group.

3 General key exchange protocol

In this section, we give a general (i.e., not platform-specific) description of our
key exchange protocol.

Let G be a (semi)group. An element g ∈ G is chosen and made public as
well as an arbitrary automorphism ϕ ∈ Aut(G) (or an arbitrary endomorphism
ϕ ∈ End(G)). Bob chooses a private n ∈ N, while Alice chooses a private m ∈ N.
Both Alice and Bob are going to work with elements of the form (g, ϕr), where
g ∈ G, r ∈ N. Note that two elements of this form are multiplied as follows:
(g, ϕr) · (h, ϕs) = (ϕs(g) · h, ϕr+s).

1. Alice computes (g, ϕ)m = (ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g, ϕm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g of the (semi)group G.

2. Bob computes (g, ϕ)n = (ϕn−1(g) · · ·ϕ2(g) ·ϕ(g) ·g, ϕn) and sends only the
first component of this pair to Alice. Thus, he sends to Alice only the
element b = ϕn−1(g) · · ·ϕ2(g) · ϕ(g) · g of the (semi)group G.

3. Alice computes (b, x) · (a, ϕm) = (ϕm(b) · a, x · ϕm). Her key is now KA =
ϕm(b) ·a. Note that she does not actually “compute” x ·ϕm because she does
not know the automorphism x = ϕn; recall that it was not transmitted to
her. But she does not need it to compute KA.

4. Bob computes (a, y)·(b, ϕn) = (ϕn(a)·b, y·ϕn). His key is nowKB = ϕn(a)·b.
Again, Bob does not actually “compute” y · ϕn because he does not know
the automorphism y = ϕm.

5. Since (b, x) · (a, ϕm) = (a, y) · (b, ϕn) = (g, ϕ)m+n, we should have KA =
KB = K, the shared secret key.

Remark 1. Note that, in contrast with the “standard” Diffie-Hellman key ex-
change, correctness here is based on the equality hm · hn = hn · hm = hm+n

rather than on the equality (hm)n = (hn)m = hmn. In the “standard” Diffie-
Hellman set up, our trick would not work because, if the shared key K was just
the product of two openly transmitted elements, then anybody, including the
eavesdropper, could compute K.



We note, on the other hand, that the standard Diffie-Hellman protocol is,
in fact, one of the simplest instantiations of our protocol, if the multiplicative
group Z∗

p is used as the platform group G, and the (public) endomorphism ϕ of

Z∗
p is given by ϕ(h) = hk for every h ∈ Z∗

p and a fixed integer k. See [4] for more
details.

In the next sections, we describe more interesting instantiations, where the
(semi)group G is non-commutative.

4 Matrices over a Galois field and extensions by special
endomorphisms

To begin with, we note that our general protocol in Section 3 can be used
with any non-commutative group G if ϕ is selected to be a non-trivial inner
automorphism, i.e., conjugation by an element which is not in the center of G.
Furthermore, it can be used with any non-commutative semigroup G as well,
as long as G has some invertible elements; these can be used to produce inner
automorphisms. A typical example of such a semigroup would be a semigroup
of matrices over some ring.

Now let G be the semigroup of 2× 2 matrices over the Galois field GF(2127).
Here we use an extension of the semigroup G by an endomorphism φ, which
is a composition of a conjugation by a matrix H ∈ GL2(GF(2127) with the
endomorphism ψ that raises each entry of a given matrix to the power of 4. The
composition is such that ψ is applied first, followed by conjugation.

Thus, for any matrix M ∈ G and for any integer k ≥ 1, we have

φ(M) = H−1ψ(M)H.

φk(M) = H−1ψ(H−1) · · ·ψk−1(H−1)ψk(M)ψk−1(H) · · ·ψ(H)H.

Now our general protocol from Section 3 is specialized in this case as follows.

1. Alice and Bob agree on public matrices M ∈ G and H ∈ GL2(GF(2127).
Alice selects a private positive integer m, and Bob selects a private positive
integer n.

2. Alice computes (M,φ)m and sends only the first component of this pair
to Bob. Thus, she sends to Bob only the matrix

A = H−1ψ(H−1) · · ·ψm−1(H−1)ψm(M)ψm−1(H) · · ·ψ(H)H.

3. Bob computes (M,φ
H
)n and sends only the first component of this pair

to Alice. Thus, he sends to Alice only the matrix

B = H−1ψ(H−1) · · ·ψn−1(H−1)ψn(M)ψn−1(H) · · ·ψ(H)H.



4. Alice computes (B, x) · (A, φm) = (φm(B) · A, x · φm). Her key is now
KAlice = φm(B) · A, which is the first component of (M,φ)m+n. Note that
she does not actually “compute” x · φm because she does not know the
automorphism x = φn; recall that it was not transmitted to her. But she
does not need it to compute KAlice.

5. Bob computes (A, y) · (B, φn) = (φn(A) ·B, y ·φn). His key is now KBob =
φn(A) · B. Again, Bob does not actually “compute” y · φn because he does
not know the automorphism y = φm.

6. Since (B, x) · (A, φm) = (A, y) · (B, φn) = (M, φ)m+n, we have KAlice =
KBob = K, the shared secret key.

5 What if the automorphism is just conjugation?

In this section, we consider the situation where the (public) automorphism ϕ
is just conjugation by a (public) matrix H. In this case, transmitted matrices
simplify to H−m(HM)m (from Alice to Bob) and H−n(HM)n (from Bob to
Alice). Thus, the situation becomes similar to that in Stickel’s protocol [11], and
that protocol is vulnerable to a linear algebra attack if matrices involved in the
protocol are over a field. The attack is as follows (see [12], [8] for more details).
The attacker, Eve, is looking for matrices X and Y such that XH = HX,
Y (HM) = (HM)Y , and XY = H−m(HM)m. Note that the first two matrix
equations translate into a system of linear equations in the entries of X and Y
over the ground field, whereas the last one does not. However, if X is invertible,
then the last matrix equation can be re-written as Y = X−1H−m(HM)m, and
this does translate into a system of linear equations in the entries of X−1 and
Y . Thus, upon replacing the first matrix equation XH = HX by the equivalent
X−1H = HX−1, Eve ends up with a system of linear equations in the entries of
X−1 and Y over the ground field. After solving this system and finding X and
Y , Eve can recover the shared secret key K from the public transmissions as
follows: X(H−n(HM)n)Y = H−n(XY )(HM)n = H−nH−m(HM)m(HM)n =
H−(m+n)(HM)m+n = K.

This kind of attack may also work if the platform semigroup consists of
matrices not over a field, but over a ring that can itself be embedded in a ring
of matrices over a field, see e.g. [5], [7], [9].

Below we show how a little “tweak” of our protocol allows one to avoid this
kind of attack.

1. Alice and Bob agree on public matrices M,H ∈ G, where H is invertible
and M is not. Let the automorphism φ be conjugation by H.

2. Alice selects a private positive integer m, and Bob selects a private positive
integer n. Alice also selects a private nonzero matrix R such that R ·(HM) =
O (the zero matrix), and Bob selects a private nonzero matrix S such that
S · (HM) = O. Such matrices R,S exist because the matrix HM is not
invertible.



3. Alice computes (M,φ)m. The first component of this pair is H−m(HM)m.
Alice then sends the matrix A = H−m(HM)m +R to Bob.

4. Bob computes (M,φ)n. The first component of this pair is H−n(HM)n. Bob
then sends the matrix B = H−n(HM)n + S to Alice.

5. Alice computes (B, x)·(H−m(HM)m, φm) = (φm(B)·H−m(HM)m, x·φm).
She only needs the first component of this pair, which isH−(m+n)(HM)m+n+
(H−mSHm) · (H−m(HM)m). Since S · (HM) = O, the second summand
vanishes, so Alice ends up with KAlice = H−(m+n)(HM)m+n.

6. Bob computes (A, y) ·(H−n(HM)n, φn) = (φn(A) ·H−n(HM)n, y ·φn). He
only needs the first component of this pair, which is H−(m+n)(HM)m+n +
(H−nRHn) · (H−n(HM)n). Since R · (HM) = O, the second summand
vanishes, so Bob ends up with KBob = H−(m+n)(HM)m+n.

7. We therefore have KAlice = KBob = K, the shared secret key.

Now let us see why the linear algebra attack as above does not work against
this protocol. Here Eve would be looking for matrices X,Y and Z such that
XH = HX, Y (HM) = (HM)Y , Z · (HM) = O, and XY +Z = H−m(HM)m+
R. The first three matrix equations do translate into a system of linear equa-
tions in the entries of X,Y and Z. However, with the last equation there is now
a problem: no matter how Eve re-arranges it, she cannot avoid having a product
of two unknown matrices, and this cannot be translated into a system of linear
equations in their entries. If Eve attempts to solve the first three matrix equa-
tions first (by translating them into a system of linear equations in the entries
of X,Y and Z), then she will have to deal with the fact that the linear system
has multiple solutions. More specifically, the equation XH = HX should have
multiple solutions because, for example, any polynomial in the matrix H com-
mutes with H, so at the very least, there are as many solutions of XH = HX as
there are elements in the ground field. (In fact, there are many more solutions
than that.) The same consideration applies to the equation Y (HM) = (HM)Y .
As for the equation Z · (HM) = O, it has at least as many solutions as there
are elements in the ground field because the matrix HM is not invertible. Thus,
if the number of elements in the ground field is sufficiently large, this approach
(trying to solve one or more of the first three matrix equations first and then
plug the solution in XY +Z = H−m(HM)m+R) is computationally infeasible.

Finally, we point out that in the protocol in this section we used the fact
that matrices over a field (or over any ring, for that matter) form not just a
semigroup, but a ring where both multiplication and addition of matrices can
be employed.

6 Security assumptions

In this section, we address the question of security of the particular instantiation
of our protocol described in Section 4.



Recall that the shared secret key K in the protocol of Section 4 is the first
component of (M, φ)m+n, which is a product of the following matrices, with k
running from 0 to m+ n− 1:

φk(M) = H−1ψ(H−1) · · ·ψk−1(H−1)ψk(M)ψk−1(H) · · ·ψ(H)H.

The assumption is that it is computationally hard to recover K from the public
information, i.e., from the matrices H,M,A, and B, where A and B are the first
components of (M, φ)m and (M, φ)n, respectively.

If we drop ψ and let φ be just the conjugation byH, then, due to cancellations
in the above referenced product, the security assumption will look “nicer”: it is
computationally hard to retrieve the key K = H−(m+n)(HM)m+n from the
quadruple of matrices (H, M, H−m(HM)m, H−n(HM)n), assuming that the
matrices H and M do not commute, i.e., HM ̸=MH.

However, “nicer” is not necessarily better in this context, as we have ex-
plained in Section 5, but in any case, we used a slightly more complex endomor-
phism φ in Section 4 to illustrate our point, which is: by varying an endomor-
phism used for a (semi)group extension, one can get a variety of new security
assumptions.

To verify the robustness of our protocol in Section 4, we have experimentally
addressed two questions. The first question is whether or not any information
about the private exponent n is leaked from transmission. That is, for a random
exponent n, how different is the first component of (M,φ)n from N , where N is a
random matrix? The second point is to determine how different the final shared
key is from a random matrix. More specifically, if Alice and Bob choose secret
integers m and n respectively, how different is the first component of (M,φ)n+m

from (M,φ)q, where q is of the same bit size as n+m? To address these questions,
we used the same strategy as in [4]; namely, we looked at the two distributions
generated by the corresponding entries of the first component of (M,φ)n and N ,
where M and N are random matrices. (Note that each entry of a matrix is an
element of the Galois field GF(2127) and is therefore representable by a bit string
of length 127.) We repeated this process 500 times and generated a frequency
distribution table for the two distributions. From the table, we produced Q−Q
(quantile) plots of the entries of the two matrices: the corresponding entries of
the first component of (M,φ)n and a random matrix N . These plots essentially
compare the cumulative distribution functions of two distributions. If the distri-
butions are identical, the resulting graph will be a straight line, which is exactly
what happened in our experiment.

The second experiment we carried out was similar to the first one, except in
this case we were comparing the first components of (M,φ)q and (M,φ)n+m,
where n,m and q are random and all roughly of the same bit size. This exper-
iment helps address the DDH (decisional Diffie-Hellman) assumption by com-
paring the shared secret key to a random key and ensuring that no information
about the former is leaked. Again, our resulting Q − Q plots suggest that the
two distributions generated by these keys are in fact indistinguishable.



Finally, we point out that if the adversary works just with the determinants
of the public matrices, then she can reduce the problem of recovering the private
exponent n to the discrete logarithm problem for the pair (detM, (detM)n). To
foil this kind of attack, it makes sense to select a matrixM with the determinant
equal to 0 or 1, see Section 7 below.

7 Parameters and key generation

Private exponentsm and n should be of the magnitude 2t, where t is the security
parameter, to make brute force search infeasible. Thus, m and n are roughly t
bits long. In particular, for 127-bit security private keys should have size 127
bits, which is consistent with the fact that we are working with the Galois field
GF(2127).

Our realization of the Galois field GF(2127) is the factor algebra Z2[x]/⟨p(x)⟩,
where ⟨p(x)⟩ is the ideal of the polynomial algebra Z2[x] generated by the (irre-
ducible) polynomial p(x) = x127 + x63 + 1. Elements of GF(2127) are therefore
polynomials of degree at most 126 over Z2.

The public matrixM is selected as a random 2×2 matrix over the Galois field
GF(2127), which means that each entry of M is a random element of GF(2127).
A random element of GF(2127) is selected as a random bit string of length 127
corresponding to coefficients of a polynomial of degree at most 126 over Z2. For
security reasons (see our Section 6) it is better to have the matrixM either non-
invertible or have determinant 1. To select such a 2× 2 matrix, we first select 3
entries randomly, and then select the remaining entry so that the determinant
of the matrix is 0 or 1.

The bit complexity of the matrix M is 127 · 4 = 508 bits, and the procedure
for sampling M is quite efficient. The whole public key consists of the matrix M
and an invertible matrix H, so the total size of the public key is 1016 bits.

Then, we need to sample an invertible 2 × 2 matrix H over GF(2127). To
do that, we sample a random 2 × 2 matrix as above, compute its determinant
and check that it is not equal to 0 in GF(2127). If it is equal to 0 (this can
happen with small probability), then we start over. Also, having computed the
determinant of H, we then easily compute H−1. We have to check that H does
not commute with M , i.e., HM ̸=MH. If it does, we select a different H.

Finally, in reference to the protocol in Section 5, we have to say how to sample
a matrix R such that R · (HM) = O (the zero matrix) if the matrix HM is not
invertible. This is done by using classical linear algebra; typically, the matrix
equation R · (HM) = O will translate into a system of linear homogeneous
equations in the entries of R, where the general solution is a one-parameter
family. We then select the value of this parameter uniformly randomly among
nonzero elements of the field GF(2127). If the general solution has more than one
parameter (this might happen if participating matrices are larger than 2 × 2),
then we randomly select the value of each parameter independently.



7.1 How to make sure the base element has a large order

We note that there is always a concern (also in the standard Diffie-Hellman
protocol) about the order of a public element: if the order is too small, then a
brute force attack may be feasible. In our situation, this concern is significantly
alleviated by the fact that our transmissions are products of powers of different
matrices rather than powers of a single matrix. Therefore, even if the order of
one of the matrices happens to be small by accident, this does not mean that
the whole product will go into loop of a small size.

However, if one wants a guarantee that the base element (M,φ) has a large
order, this requires some extra effort. First we observe that the order of an
element (g, φ) of a semidirect product tends to have the magnitude of the g.c.d.
of the orders of the individual elements g and φ in their “native” (semi)groups.
Of course, this statement and the statement in the previous paragraph are too
informal, so now we will look at the second component of (M,φ)k specifically in
our protocol from Section 4. This second component is φk, and here is how this
endomorphism acts on an arbitrary 2× 2 matrix S over GF(2127):

φk(S) = H−1ψ(H−1) · · ·ψk−1(H−1)ψk(S)ψk−1(H) · · ·ψ(H)H.

To bound the order k from below, we can look at the determinant of φk(S).
The determinant is obviously equal to det(ψk(S)). Since we are working in char-
acteristic 2, we have det(ψk(S)) = det(ψ(S)k) = (det(ψ(S)))k (recall that the
endomorphism ψ acts by raising each entry of S to the power of 4). Now notice
that if S is invertible, then det(S) is an element of the multiplicative group of
the Galois field GF(2127); the order of this group is 2127 − 1, which happens to
be a prime number. Therefore, if det(S) ̸= 1, then det(S), as well as det(ψ(S)),
has order 2127 − 1 in the multiplicative group of GF(2127). This gives a lower
bound for the order of the second component of a base element (M,ϕ). The
actual order should be much higher for “generic” matrices S and H, but if one
wants a guaranteed lower bound, then 2127 − 1 should be satisfactory.

8 Computational cost and run time

From the look of transmitted elements in our protocol in Section 4, it may seem
that the parties have to compute a product of m (respectively, n) elements of the
(semi)groupG. However, since the parties actually compute powers of an element
of a semigroup (which is an extension of G by an endomorphism), they can use
the “square-and-multiply” method, as in the standard Diffie-Hellman protocol.
Then there is a cost of applying an endomorphism φ to an element of G, and also
of computing powers of φ applied to an element of G. In our situation in Section
4, applying conjugation by a matrix H amounts to just two multiplications of
matrices in G (which boils down to 8 multiplications in GF(2127)), and applying
the endomorphism ψ does not, in fact, require any multiplications, just inserting
“0” bits in a bit string representing an element of GF(2127), see [2].



Thus, the cost of computing (M,φ)n is O(log n), just as in the standard
Diffie-Hellman protocol. However, there is no reduction modulo a large prime p;
instead, all computations are done by utilizing known methods of fast compu-
tation in a field of characteristic 2. Specifically, we used the RELIC package [2]
for computations in GF(2127).

With the parameters specified in our Section 7, the average run time of the
whole key exchange protocol in Section 4 is 0.2 s on a typical desktop computer,
whereas for the protocol in Section 5 the average run time is 0.03 s.

9 Conclusions

We have presented new key exchange protocols based on extension of a semigroup
of matrices over GF(2127) by endomorphisms. It has some resemblance to the
classical Diffie-Hellman protocol, but there are several distinctive features that,
we believe, give our protocols important advantages:

• Even though the parties do compute a large power of a public element (as
in the classical Diffie-Hellman protocol), they do not transmit the whole result,
but rather just part of it.

• By varying automorphisms (or endomorphisms) used for extension, we get
new security assumptions. We illustrate this point in the present paper by using
a particular endomorphism which is a composition of an inner automorphism
(i.e., conjugation by an invertible matrix) with the endomorphism that raises
each entry of a given matrix to the power of 4.

• By working in a Galois field of characteristic 2, we make computation very
efficient.

References

1. I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, Key agreement, the Algebraic
Eraser, and lightweight cryptography, Algebraic methods in cryptography, Contemp.
Math. Amer. Math. Soc. 418 (2006), 1–34.

2. D. F. Aranha and C. P. L. Gouvêa, RELIC is an Efficient Library for Cryptography,
http://code.google.com/p/relic-toolkit/

3. W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Information Theory IT-22 (1976), 644–654.

4. M. Habeeb, D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using
semidirect product of (semi)groups, in: ACNS 2013, Lecture Notes Comp. Sc. 7954
(2013), 475–486.

5. M. Kreuzer, A. D. Myasnikov and A. Ushakov, A linear algebra attack on group-
ring-based key exchange protocols, in: ACNS 2014, to appear.

6. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC-Press 1996.

7. C. Monico and M. Neusel, Cryptanalysis of a system using matrices over group
rings, preprint.

8. C. Mullan, Cryptanalysing variants of Stickel’s key agreement protocol, J. Math.
Crypt. 4 (2011), 365-373.



9. A. D. Myasnikov and A. Ushakov, Quantum algorithm for the discrete logarithm
problem for matrices over finite group rings, Groups, Complexity, Cryptology 6
(2014), 31–36.

10. A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Non-commutative cryptography
and complexity of group-theoretic problems, Amer. Math. Soc. Surveys and Mono-
graphs, 2011.

11. E. Stickel, A New Method for Exchanging Secret Keys. In: Proc. of the Third
International Conference on Information Technology and Applications (ICITA05) 2
(2005), 426–430.

12. V. Shpilrain, Cryptanalysis of Stickel’s key exchange scheme, in: Computer Science
in Russia 2008, Lecture Notes Comp. Sc. 5010 (2008), 283-288.


