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group exponentiations to a computationally more powerful server (e.g. a cloud server). We provide the first

practical and provable solutions to this batch delegation problem for groups commonly used in cryptography,

based on discrete logarithm and RSA hardness assumptions. Our theoretical analysis suggests that our protocol

reduce the client’s running time by about 1 order of magnitude with respect to non-delegated computation.

We show results from a software implementation on a commodity platform that essentially confirms this

improvement without need for optimizations. Previous results either solved delegation of a single group

exponentiation with limited security properties, or verification of multiple group exponentiations in prime-

order groups (not applicable to RSA) and under certain simplifying assumptions on the exponentiation

values (not applicable to some discrete logarithm groups). Our results directly solve batch delegation of

algorithms in widely used cryptosystems, such as RSA encryption with large exponents and key contribution

in Diffie-Hellman key agreement protocols.
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1 INTRODUCTION
Server-aided cryptography is an active research area addressing the problem of clients delegating

or outsourcing cryptographic computations to computationally more powerful servers. Batch

cryptography is another active research area addressing the problem of performing multiple

cryptographic operations faster than independently repeating each operation. Currently, both

areas are seeing a renewed interest because of the increasing popularity of the cloud computing

computation paradigm. The problem studied in this paper lies in the intersection of these two
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areas. Computing group exponentiation has been object of study in both areas, since this operation

is a cornerstone of many cryptographic protocols.

Server-aided cryptography: state of the art summary. The first formal model for delegation of

cryptographic operations was introduced in [18] (but see references therein for earlier areas related

to server-aided cryptography and earlier attempts to delegate group exponentiation), Overall,

literature results in this area can be characterized depending on what functions are being delegated

(the most popular being either group exponentiation, starting with [18], or an arbitrary polynomial-

time computation, starting with [17]), on how many servers are considered (a single logical server

generally being preferred to many), and on the assumption on server behavior (a malicious server

being a more desirable and challenging assumption than that of a semi-honest server). While

theoretical solutions exist for arbitrary polynomial-time computations, it is unclear if their claimed

asymptotic efficiency has any hope of becoming practical. Known efficient solutions for delegating

a single group exponentiation either work with a semi-honest server (see, e.g., [11] and references

therein), or bound the probability that a malicious server successfully cheats by a constant (see, e.g.,

[8, 13] and references therein). Our very recent result [15] shows a way to provably and efficiently

reduce this probability to exponentially small, but only works for prime-order groups.

In this paper we study the problem of a client delegating multiple group exponentiations to a

possibly malicious server while performing less work than by a non-delegated computation of all

group exponentiations, for groups typically encountered in cryptography (i.e., discrete logarithm

and RSA groups).

Batch cryptography: state of the art summary. First discussed in [16], batch cryptography problems

are concerned with performing multiple cryptographic protocol executions at lower costs than by

independent executions. Literature results can be characterized as focusing on (non-interactively)

verifying multiple outputs of a function, the most studied being functions related to group expo-

nentiation, as well as on applications domains like operations (i.e., generation, verification) within

encryption or signature schemes. In 1989, Fiat [16] first discussed batch cryptography problems,

specifically targeting a batch cryptography solution for a variant of RSA. In 1994, Naccache et. al.

[23] introduced a batch verifier for DSA signature. In 1995, Yen et. al. [30] improved the test of

batch verification of DSA and RSA signatures by using a small exponent set of the type {0, 1}ℓ

for smaller parameter ℓ; however, the RSA batch verifier was broken by Boyd and et. al [3] in

2000. In 1998, Bellare et. al. [1] showed a formal model for batch verification and proposed three

algorithms: (1) Random Subset Test (RST), (2) Small Exponent Test (SET), and (3) Bucket Test (BT),

by combining the ideas from [23, 30]. Variants of SET have been studied in [9], where Cheon et. al.

introduced two algorithms: (1) Sparse Exponent Test (SPET) and (2) Complex Exponent Test (CET),

and claimed that their experiments show that SPET and CET are at least twice faster than SET.

In 2015, Cheon et al. [10] proposed improved version of SPET and applied them to modified DSA

and ECDSA signatures. In 2017, Hwang et al. proposed in [20] a simplified variant of SET that can

provably provide batch verification of n instances using only n − 1 randomized exponents. In all of

these batch verification tests, it is assumed that the alleged exponentiations belong to the group.

In 2000, Boyd et. al. [3] showed several attacks on batch verification tests, mostly on algorithms

involving SET when they are used on non prime order subgroups. In addition to that, they try to

repair those algorithms by using a loose verification test instead of a strict verification test (e.g., if a

strict verification test checks that y = дx then a loose verification test can check whether y = ±дx );
but note that with a loose verification test, one cannot guarantee a unique computation result

for the underlying cryptographic function. In [26], Peng et al. discussed the importance of group

membership tests and showed weaknesses of the tests used in papers [1, 19] due to their lack of a
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membership test. In addition to that, the authors studied the group membership problem in the

context of zero knowledge proofs in the equality of logarithms of common base.

In this paper we show that using delegation these tests can be efficiently transformed into tests

that work for any alleged exponentiations (even values not belonging to the group or just arbitrary

values). More generally, we use batch verifiers for group exponentiation as a solution tool to verify

outputs returned by a (possibly malicious) server in batch delegation of group exponentiation.

We show novel extensions of the Small Exponents test to efficiently, privately and securely verify

exponentiations over Discrete Log and RSA groups by a malicious server.

Our contribution and techniques.We formally define client-server protocols for the batch delegation

of group exponentiation that satisfies desirable requirements like efficiency (mainly in terms of

client computation, but also server computation and when relevant, off-line client computation),

correctness, privacy (of client’s inputs) and security (against a malicious server trying to convince

a client to accept an incorrect computation). We design and prove solutions for the following

exponentiation functions and relevant groups, where p,q are primes:

(1) Fp,q,д(x) = y, where x ∈ Zq , y = д
x

mod p, and д is a generator of the q-order subgroup of

Z∗p , p = 2q + 1,
(2) Fn,e (x) = y, where x ∈ Z∗n , y = xe mod n, n = pq, p = 2p1 + 1,q = 2q1 + 1, and p1,q1 are

primes.

Note that these group settings are among themost recommended formany cryptographic algorithms

and protocols based on the hardness of computing discrete logarithms and inverting the RSA

function, or related problems. As a direct consequence, we obtain efficient, correct, private and

secure batch delegation protocols for algorithms that are part of widely used cryptosystems, such

as RSA encryption with large exponents and key contribution in Diffie-Hellman key agreement

protocols, etc.

The starting point in our approach is the following protocol (for simplicity, not yet targeting

privacy of the inputs):

(1) client C sends them inputs to server S
(2) S sendsm (alleged) exponentiations to C
(3) C checks that they were correctly computed using a Small Exponents Test (as in [1, 3, 21, 23]).

This protocol does not meets our requirements because of the mentioned limitations to the Small

Exponent Tests, which limit the validity of the above protocol only when the alleged exponentiation

values sent by S are guaranteed to be group members (raising a challenge for our Discrete Log

groups), and only when these values belong to a prime-order group (raising a challenge for RSA

groups). We overcome these challenges by providing an efficiently verifiable membership proof for

the discrete log case (C only needs 1 additional multiplication per batch element) and a fix for the

RSA case based on an efficiently verifiable proof that the exponentiation values provided by S do not
contain low-order elements (here,C only needs 2 additional multiplications per batch element). Our

resulting protocols allow a client to delegate the computation of multiple exponentiations in these

groups to a single (possibly malicious) server, more efficiently than by computing them without any

delegation. For each of the two considered groups, we present two protocols: a protocol with no

offline phase or input privacy, and a protocol which achieves input privacy using an offline phase.

We provide theoretical analysis showing that in all 4 protocols the client’s online running time is

about one order of magnitude faster than non-delegated computation. We also show performance

results of our software implementation of these protocols that essentially confirms the theoretical

analysis on a commodity platform and with no particular need for software optimizations.

This paper can be considered an improved version of [14], specifically contributing 4 main

improvements. First, we have slightly improved the client’s online efficiency of our 2 main protocols
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(with off-line phase and input privacy) by moving some client computations from the online phase

to the offline phase. Second, the security of our protocols for the exponentiation function Fn,e is
now proved differently, and without any computational assumption, thus holding even against

computationally unlimited malicious servers (while previously we had only proved this property

assuming that the server cannot factor n). Third, we have detailed our main protocol for the

exponentiation function Fn,e and given a sketch of proof of its correctness, efficiency, privacy

and security properties (previously, this protocol was only briefly mentioned). Fourth, we have

produced a software implementation of our 4 protocols and reported on their performance.

2 DEFINITIONS AND PRELIMINARIES
In this section we formally define batch delegation protocols for multiple group exponentiations

(with their correctness, security, privacy and efficiency requirements) and review the notion of

batch verification of multiple group exponentiations, as well as the main algorithm in the area: the

small exponents verification test. We start with some basic notations.

Basic notations. The expression z ← T denotes randomly and independently choosing z from a

set T . By z ← A(x1,x2, . . .) we denote running the (probabilistic) algorithm A on input x1,x2, . . .
and any random coins, and returning z as output. By (z, tr ) ← (A(x1,x2, . . .),B(v1,v2, . . .)) we
denote running the (probabilistic) interactive protocol between A, with input x1,x2, . . . and any

random coins, and B, with input v1,v2, . . . and any random coins, where tr denotes A′s and B’s
messages in this execution, and z is A’s final output.

System scenario: entities and protocol. We consider a system with two types of parties: clients
and servers, where a client’s computational resources are expected to be more limited than those

of a server, and thus clients are interested in delegating the computation of expensive functions

to servers. In all our solutions, we consider a single client, denoted by C , and a single server,

denoted by S . We ignore communication attacks as such attacks can be separately addressed using

known security techniques. As in previous work in the area, we consider an offline phase, where

exponentiations to random exponents can be precomputed by the client, or made somehow available

to the client by its deploying entity. (Some previous work in the area mentions the pseudo-random

power generator from [4, 24] as a potential source efficiently generating such exponentiations; we

note that recent attacks may force parameter settings on this generator that nullify the supposed

performance gains.)

Let σ denote the computational security parameter (derived from hardness considerations of the

underlying computational problem and used to set public parameter lengths), and let λ denote the

statistical security parameter (defined so that statistical test failure events with probability 2
−λ

are

extremely rare). Both parameters are expressed in unary notation (i.e., 1
σ , 1λ). We think of σ as

being larger than λ. Let F : Dom(F ) → CoDom(F ) denote a function, where Dom(F ) is F ’s domain,

CoDom(F ) is F ’s co-domain, and let desc(F ) denote F ’s description. Assuming 1
σ , 1λ ,desc(F ) are

known to both C and S , we define a client-server protocol for the delegated (m-instance) computation
of F as the execution:

(1) pp ← Offline(1σ , 1λ ,desc(F )),
(2) ((z1, . . . , zm), tr ) ← (C(pp,x1, . . . ,xm), S).

Step 1, if present, is executed in an offline phase, when no input to the function F is available yet,

and, if needed by the application, could also be executed by a third party, not colluding with S . Step
2 is executed in the online phase, when the inputs x1, . . . ,xm to the function F are available to C .
At the end of both phases, C learns z1, . . . , zm (where zi is intended to be equal to yi = F (xi ), for
i = 1, . . . ,m), and tr is the transcript of the communication exchanged between C and S . (We will

often omit desc(F ), 1σ , 1λ , tr for brevity.)
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Correctness Requirement. Informally, if both parties follow the protocol,C obtains some output

at the end of the protocol, and this output is, with high probability, equal to them-tuple of values

obtained by evaluating function F on C’sm inputs.

Definition 1. Let σ , λ be the security parameters, let F be a function, and let (C, S) be a client-
server protocol for the delegated m-instance computation of F . We say that (C, S) satisfies δc -
correctness if for any x1, . . . ,xm in F ’s domain,

Prob

[
out ← CorrExp

F,A(1
σ , 1λ) : out = 1

]
≥ δc ,

for some δc very close to 1, where experiment CorrExp is:

1. pp ← Offline(desc(F ))
2. ((z1, . . . , zm), tr ) ← (C(pp,x1, . . . ,xm), S)
3. if zi = F (xi ) for all i = 1, . . . ,m, then return: 1

else return: 0

Security Requirement. Informally, a malicious adversary corrupting S and choosing C’s inputs
x1, . . . ,xm , cannot convince C to obtain, at the end of the protocol, some output z ′i different from
the value yi that is obtained by evaluating function F on C’s input xi , for some i ∈ {1, . . . ,m}.

Definition 2. Let σ , λ be the security parameters, let F be a function, and let (C, S) be a protocol
for the delegated computation of F . We say that (C, S) satisfies ϵs -security against a malicious
adversary if for any algorithm A,

Prob

[
out ← SecExp

F,A(1
σ , 1λ) : out = 1

]
≤ ϵs ,

for some ϵs close to 0, where experiment SecExp is:

1. pp ← Offline(desc(F ))
2. (x1, . . . ,xm ,aux) ← A(desc(F ))
3. ((z1, . . . , zm), tr ) ← (C(pp,x1, . . . ,xm),A(aux))
4. if zi ∈ {⊥, F (xi )} for all i = 1, . . . ,m, then return: 0

else return: 1.

Privacy Requirement. Informally, if C follows the protocol, a malicious adversary corrupting

S cannot obtain any information about C’s inputs x1, . . . ,xm from a protocol execution. This is

formalized by extending the indistinguishability-based approach typically used in definitions for

encryption schemes.

Definition 3. Let σ , λ be the security parameters, let F be a function, and let (C, S) be a client-
server protocol for the delegated computation of F . We say that (C, S) satisfies ϵp -privacy (in the
sense of indistinguishability) against a malicious adversary if for any algorithm A, it holds that

Prob

[
out ← PrivExp

F,A(1
σ , 1λ) : out = 1

]
≤ 1/2 + ϵp ,

for some ϵp (intended to be 0 or very close to 0), where experiment PrivExp is:

1. pp ← Offline(desc(F ))
2. ((x0,1, . . . ,x0,m), (x1,1, . . . ,x1,m),aux) ← A(desc(F ))
3. b ← {0, 1}
4. ((z1, . . . , zm), tr ) ← (C(pp, (xb,1, . . . ,xb,m)),A(aux))
5. d ← A(tr ,aux)
6. if b = d then return: 1 else return: 0.
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Efficiency Metrics and Requirements. Let (C, S) be a client-server protocol for the delegated
computation of a function F . We say that (C, S) has efficiency parameters (tF , tP , tC , tS , cc,mc) if F
can be computed (without delegation) using tF atomic operations, C can be run in the offline phase

using tP atomic operations and in the online phase using tC atomic operations, S can be run using

tS atomic operations, C and S exchange a total of at mostmc messages, of total length at most cc .
We only consider group multiplication as atomic operation, thus neglecting lower-order operations

(e.g., equality/inequality testing, additions and subtractions between group elements). While we

try to minimize all these protocol efficiency metrics, our main goal is to design protocols where

tC << tF , and tS is not significantly larger than tF . By texp (ℓ) we denote the max number of group

multiplications used to compute an exponentiation of a group element to an ℓ-bit exponent. By
tm,exp (ℓ) we denote the max number of group multiplications used to computem exponentiations

of the same group element (also called fixed-base exponentiations) tom arbitrary ℓ-bit exponents.
By tprod,m,exp (ℓ) we denote the max number of group multiplications used to compute a product

ofm exponentiations of (possibly different) group elements tom arbitrary ℓ-bit exponents. Finally,
by tinv (ℓ) we denote the max number of group multiplications used to compute the inverse of a

group element.

Batch Verification Tests. A batch verification test for a function F is an efficient algorithmV that,

on input x1, . . . ,xm ∈ Dom(F ), and z1, . . . , zm , returns a bit b (where b = 1 denotes that V believes

that zi = F (xi ), for i = 1, . . . ,m, and b = 0 denotes the complement event). We say that the batch

verification test V satisfies correctness if V returns 1 when zi = F (xi ), for i = 1, . . . ,m. Informally,

soundness requirements for V state that V returns 1 with small probability if at least one of the zi
values is different than the output of F on input xi . Let G be a group. More formally, we say that V
satisfies δs -soundness (against a partially honest adversary) if for any z1, . . . , zm ∈ G, V returns 1

with probability ≤ δs if zi , F (xi ), for at least one i ∈ {1, . . . ,m}.
In [1], based on [23, 30], the authors present a test, called the ‘small exponents batch verification

test’ for the function computing (fixed-base) exponentiation in any prime-order group (i.e., Fq,д(x) =
дx , where д has order q and q is a prime). Their test satisfies correctness and δs -soundess against a
partially honest adversary, for δs = 2

−λ
, and any statistical security parameter λ. The test, defined

to verify that yi = д
xi
, for i = 1, . . . ,m, goes as follows:

(1) randomly choose s1, . . . , sn ∈ {0, 1}
λ

(2) compute x =
∑n

i=1 xisi mod q and y =
∏n

i=1 y
si
i

(3) if дx = y then return: 1 else return: 0

We stress that [1] only proves the soundness of this test in the particular case where y1, . . . ,ym
belong to groupG. In our model, the server can be malicious and may sent yi ’s that are not in the

group, and membership in the latter may not be more efficiently testable than performing one

exponentiation (as it seemed the case in groups frequently used in discrete logarithm cryptosystems).

Moreover, their test was only defined for prime-order groups, thus not directly applying to groups

in cryptosystems related to RSA. In [3] it has been observed that this test can be defined for the

RSA group Z∗n , and even satisfies correctness, but does not satisfy soundness.

In [1] the authors also present two additional verification tests for multiple exponentiation: the

random subsets test, and the bucket test. The random subset test is always less efficient than the

small exponents and the bucket tests are. The bucket test can be abstracted as a test that repeats the

small exponents test multiple times and is more efficient than the small exponents test only when

the number of exponentiations to be tested is rather large. All our protocols, although described by

using the small exponents test, do generalize to this scenario by using the bucket test.
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3 FROM BATCH VERIFICATION TO BATCH DELEGATION OVER DISCRETE LOG
TYPE GROUPS

In this section we propose two client-server protocols for secure batch delegation to a single (and

possibly malicious) server of exponentiations in the q-order subgroupGq of Z∗p , where p = 2q + 1
and p,q are large primes, a group often used in cryptosystems that base their security on the

hardness of the discrete logarithm or related problems.

The two protocols can be seen as different ways to realize the high-level approach described in

Section 1 for discrete log groups, resulting in protocols satisfying security and uncomparable setup,

efficiency and privacy properties.

We start by providing useful number theory definitions and facts in Section 3.1. Our first protocol,

where no computation is required in an off-line phase, and the client does not hide its inputs from

the server, is described in Section 3.2. Our second protocol, where the client completely hides its

inputs from the server, while performing some calculations in an offline phase, is described in

Section 3.3.

3.1 Number Theory Definitions and Facts
Let p = 2q + 1, for p,q primes. Recall that Z∗p = {1, . . . ,p − 1} and Z

∗
p has a q-order subgroup which

we denote by Gq . Since q is prime, Gq is cyclic, and we let д be a generator of Gq . Consider the

function Fp,q,д : Zq −→ Gq defined as Fp,q,д(xi ) = yi , for yi = д
xi

mod p for all i = 1, . . . ,m. Here,

p,q,д are assumed to be part of desc(Fp,q,д).
An integer y ∈ Z∗p is a quadratic residue modulo p if there exists r ∈ Z∗p such that r 2 = y mod p.

An integer y ∈ Z∗p is a quadratic non residue modulo p if there does not exist an r ∈ Z∗p such that

r 2 = y mod p. Euler’s theorem (see, e.g., [25]) says that for any odd prime p and any a ∈ Z∗p , a is a

quadratic residue modulo p if and only if a(p−1)/2 = 1 mod p. For the considered type of integers

p = 2q + 1, for p,q primes, this implies the following

Fact 1. Gq is the set of quadratic residues in Z∗p .

Fact 1 also implies that Z∗p can be partitioned into 2 equal-size sets: the set of quadratic residues

modulo p (i.e., Gq ) and the set of quadratic non residues modulo p (i.e., Z∗p \Gq ).

3.2 Batch Delegation with No Offline Phase or Input Privacy
Our first protocol for delegating multiple unknown-exponent known-base exponentiations in group

Z∗p satisfies the following

Theorem 3.1. Let p,q be large primes such that p = 2q + 1, let σ be the computational security

parameter associated with theq-order subgroupGq ofZ
∗
p , and let λ be a statistical security parameter.

There exists (constructively) a client-server protocol (C, S) for batch delegation of the computation

of function Fp,q,д onm inputs, which satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2
−λ
;

3. (tF , tS , tP , tC , cc,mc)-efficiency, where

• tC = 2m + tprod,m,exp (λ) + texp (σ )
• tF = tm,exp (σ )
• tS = tm,exp (σ ) +m · texp (σ )
• cc =m elements in Zq + 2m elements in Z∗p
• tP = 0 andmc = 2.
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We note the main takeaway from the above theorem: delegation to a single (potentially malicious)

server allows C to computem exponentiations faster than by computing them without delegation,

the improvement being a multiplicative factor of about O(σ/λ). In what follows, we describe

protocol (C, S) and prove its properties, as claimed in the theorem.

Informal description of the protocol (C, S). Our protocol’s starting point is the idea discussed
in the Introduction: C sends them exponents to S , S sendsm (alleged) exponentiations to C , and C
checks that they were correctly computed using the small-exponents verification test from [1]. As

the latter was only defined and proved correct when the values sent by S are in the group (here

being Gq ), we modify this idea by requiring that S provides an efficiently verifiable proof that each

sent exponentiation is in Gq . The straightforward way, via Euler’s theorem, to non-interactively

verify that an integer is in Gq involves one exponentiation, which is too expensive for C . In our

protocol, based on Fact 1, S sends a square root modulo p of the sent values, and C verifies the

exponentiations by just 1 multiplication operation per value, which is efficient enough for C in our

delegation model.

Formal description of the protocol (C, S).

Input to S and C: 1σ , 1λ , desc(Fp,q,д)

Input to C: x1, . . . ,xm ∈ Zq
Instructions for C and S:

(1) C sends x1, . . . ,xm to S
(2) For i = 1, . . . ,m,

S computes yi = д
xi

mod p

S computes ti = y
(q+1)/2
i mod p

S sends y1, . . . ,ym , t1, . . . , tm to C
(3) For i = 1, . . . ,m,

if ti or yi < Z
∗
p then C returns: ⊥ and halts

if t2i , yi mod p then C returns: ⊥ and halts

C randomly chooses s1, . . . , sm ∈ {0, 1}
λ

C computes x =
∑m

i=1 xisi mod q
C computes y =

∏m
i=1 y

si
i mod p

if дx , y mod p then C returns: ⊥ and halts

C returns: (y1, . . . ,ym).

Properties of the protocol (C, S): The efficiency properties are verified by protocol inspection.

• Round complexity: the protocol only requires one round, consisting of one message fromC to

S followed by one message from S to C .
• Communication complexity: the protocol requires the transfer ofm elements of Zq from C to

S and 2m elements of Z∗p from S to C .
• Runtime complexity: S performsm fixed-base exponentiations andm variable-base exponenti-

ations to σ -bit exponents.C performsm exponentiations to λ-bit exponents, 1 exponentiation
to a σ -bit exponent and 2m multiplications. Note that to check if ti or yi < Zn , C only needs

O(σ ) time, much less than a multiplication in Z∗n , and we can ignore it in our calculations.

The correctness property follows by showing that if C and S follow the protocol, C always outputs

(y1, . . . ,ym) such that yi = д
xi

mod p for all i = 1, . . . ,m. First, we observe that C does not halt

because of the conditions ‘ti or yi < Z
∗
p ’ or ‘t

2

i , yi mod p’. This is because for all i = 1, . . . ,m, S
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computes yi as д
xi

mod p and thus yi ∈ Gq and

t2i =
(
y
(q+1)/2
i

)
2

= y
q+1
i = дxi (q+1) ≡ дxi = yi mod p.

Then, we observe thatC does not halt because of the condition ‘дx , y mod p’, by the correctness

of the small-exponent batch verification test.

To prove the security property against a malicious S , assume that S sends to C at least one value

yi such that yi , Fp,q,д(xi ) for some i = 1, . . . ,m. We need to compute an upper bound ϵs on the

security probability that S convincesC to output such ayi . We obtain that ϵs = 2
−λ

as a consequence

of the following 2 claims:

(1) if C does not halt because of the conditions ‘ti or yi < Z
∗
p ’, or ‘t

2

i = yi mod p’, then
y1, . . . ,ym ∈ Gq ;

(2) if y1, . . . ,ym ∈ Gq , the probability that C does not halt because of the condition ‘дx , y

mod p’ is ≤ 2
−λ
.

Claim 1 directly follows from Fact 1, stating that Gq coincides with the set of quadratic residues

in Z∗p , and thus if at least one yi is not in Gq , this yi will either not belong to Z∗p or not have a

square root modulo p and thus C will reject because of the relevant checks.

Claim 2 directly follows by observing that since we are assuming that at least one value yi
satisfies yi , Fp,q,д(xi ), and that y1, . . . ,ym ∈ Gq , we can apply the soundness of the small-

exponent verification test, saying that C passes the test with probability at most 2
−λ
.

3.3 Batch Delegation with Input Privacy and Offline Phase
Our second protocol for delegating multiple unknown-exponent known-base exponentiations in

group Z∗p satisfies the following

Theorem 3.2. Let p,q be large primes such that p = 2q + 1, let σ be the computational security

parameter associated with theq-order subgroupGq ofZ
∗
p , and let λ be a statistical security parameter.

There exists (constructively) a client-server protocol (C, S) for batch delegation of the computation

of function Fp,q,д onm inputs, which satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2
−λ
;

3. ϵp -privacy, for ϵp = 0;

4. (tF , tS , tP , tC , cc,mc)-efficiency, where

• tF = tm,exp (σ )
• tC = 3m + tprod,m,exp (λ) + texp (σ )
• tS = tm,exp (σ ) +m · texp (σ )
• tP = tm,exp (σ )
• cc =m values in Zq + 2m values in Z∗p andmc = 2.

We note the main takeaway from the above theorem: in addition to all properties of our first protocol

(including the O(σ/λ) speedup of client computation with respect to non-delegated computation),

our second protocol also satisfies privacy of the exponents, due to the use of exponentiations

computed in an offline phase.

Informal description of the protocol (C, S). Our second protocol augments our first protocol

via an exponent masking technique to achieve the privacy property, as follows. Instead of directly

sending the input exponents x1, . . . ,xm ∈ Zq to S , C first masks them with some random values

u1, . . . ,um in Zq , which were precomputed by or provided to C in an offline phase along with

associated exponentiations v1, . . . ,vm ∈ Gq . Then, the message from C to S only contains random
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elements in Zq and does not leak any information at all about x1, . . . ,xm . This masking does not

affect correctness of the computation since after S sends the exponentiationsw1, . . . ,wm for these

masked values, C can use these latter exponentiations together with values v1, . . . ,vm to obtain

exponentiations y1, . . . ,ym for the input exponents x1, . . . ,xm .

Formal description of the protocol (C, S).

Input to S and C: 1σ , 1λ , desc(Fp,q,д)

Input to C: x1, . . . ,xm ∈ Zq
Offline phase instructions:

(1) For i = 1, . . . ,m
randomly choose ui ∈ Zq and s1, . . . , sm ∈ {0, 1}

λ

set vi := д
ui

mod p and store (ui ,vi ) on C

Online phase instructions:

(1) C sets zi := (xi − ui ) mod q for i = 1, . . . ,m
C sends z1, . . . , zm to S

(2) For i = 1, . . . ,m,

S computeswi := д
zi

mod p

S computes ti := w
q+1
2

i mod p
S sendsw1, . . . ,wm , t1, . . . , tm to C

(3) For i = 1, . . . ,m,

if ti orwi < Z
∗
p then C returns: ⊥ and halts

if t2i , wi mod p then C returns: ⊥ and halts

C computes z =
∑m

i=1 zisi mod q
C computesw =

∏m
i=1w

si
i mod p

if дz , w mod p then C returns: ⊥ and halts

C sets yi := wi · vi mod p for all i = 1, . . . ,m
C returns: (y1, . . . ,ym).

Properties of the protocol (C, S): The efficiency properties are verified by protocol inspection.

Round and communication complexity are the same as for our first protocol. As for the runtime

complexity, we consider both the offline and the online phase. During the offline phasem fixed-base

exponentiations with random σ -bit exponents are performed (these can be efficiently approximated,

for instance, byC using a pseudo-random power generator like those in [4, 24] or by another server

and stored on C’s device, as described in all papers in the area, starting with [18]). During the

online phase, S performsm fixed-base exponentiations andm variable-base exponentiations to σ -bit
exponents, and C performs a product ofm exponentiations to λ-bit exponents, 1 exponentiation
to a σ -bit exponent and 3m multiplications (thus, onlym more multiplications than in the first

protocol). Note that C’s subtractions mod q and checks of whether ti orwi < Z
∗
p only need O(σ )

time (much less than a multiplication in Z∗n ) and thus are, as before, ignored in our calculations.

The correctness property follows by showing that if C and S follow the protocol, C always outputs

(y1, . . . ,ym) such that yi = д
xi

mod p for all i = 1, . . . ,m. Similarly as done for our first protocol,

we show that C does not halt because of the conditions ‘ti or wi < Z
∗
p ’ or ‘t

2

i , wi mod p’, or

‘дz , w mod p’. Then, the correctness of C’s output follows by observing that C returns, for

i = 1, . . . ,m,

yi = wi · vi = д
zi · дui = дxi−ui · дui = дxi mod p.
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The privacy property of the protocol against a malicious S follows by observing that C’s only
message to S does not leak any information about the input exponents x1, . . . ,xm . This message is

(z1, . . . , zm) where zi = (xi −ui ) mod q, for i = 1, . . . ,m, and where u1, . . . ,um are uniformly and

independently distributed in Zq . Intuitively, as subtraction between a group element and a random

group element returns a random group element, the z1, . . . , zm are uniformly and independently

distributed in Zq and independently from (x1, . . . ,xm). A bit more formally, by a Shannon theorem

argument, any two m-tuples for (x1, . . . ,xm) are equally likely to have been used to generate

(z1, . . . , zm), each through exactly one (u1, . . . ,um) tuple.

To prove the security property against a malicious S , assume that S sends to C at least one value yi
such that yi , Fp,q,д(xi ) for some i = 1, . . . ,m. We then compute the upper bound ϵs = 2

−λ
on the

security probability that S convinces C to output such a yi , as a consequence of the following 3

claims:

(1) if C does not halt because of the conditions ‘ti or wi < Z
∗
p ’, or ‘t

2

i = wi mod p’, then
w1, . . . ,wm ∈ Gq ;

(2) ifw1, . . . ,wm ∈ Gq , the probability thatC does not halt because of condition ‘дz , w mod p’

is ≤ 2
−λ
;

(3) the probability thatC returns a tuple (y1, . . . ,ym) including a valueyi such thatyi , Fp,q,д(xi )
is the probability that C does not halt because of condition ‘дz , w mod p’.

Claims 1 and 2 are proved as done for our first protocol. Claim 3 follows by observing that each yi
is uniquely determined bywi and vi , for i = 1, . . . ,m.

4 FROM BATCH VERIFICATION TO BATCH DELEGATION OVER RSA TYPE GROUPS
In this section we propose two client-server protocols for secure batch delegation to a single (and

possibly malicious) server of exponentiations in the group Z∗n , where n = pq and p,q are large

primes of the form p = 2p1 + 1,q = 2q1 + 1, for primes p1,q1.
The two protocols can be seen as different ways to realize the high-level approach described

in Section 1 for RSA type groups relative to large exponents, resulting in protocols with security

and incomparable setup, efficiency and privacy properties. Note that RSA encryption or signature

verification may already only require a small number of group multiplications in applications where

a small public exponent (e.g.: 3) is chosen. However, as noted in [1], there are various application

scenarios where one might want to use a larger exponent (for example, when faster decryption or

signing is of interest).

We start by providing useful number theory definitions and facts in Section 4.1. Our first protocol,

where the client does not hide its inputs from the server, and the client does not have to precalculate

in the offline phase, is described in Section 4.2. Our second protocol, where the client completely

hides its inputs from the server, and the client performs some calculations in the offline phase, is

described in Section 4.3.

When compared with the protocols for discrete logarithm type groups, we note that the group

Z∗n is not cyclic and thus the verification tests from [1], as written, do not suffice. Thus, we study

the reasons why the small exponents verification test does not suffice, and propose remedies via

an efficiently verifiable proof from the server. The main novelty here is a technique to prove and

efficiently verify that the values sent by the server do not differ by the intended exponentiations by

a low-order integer. This requires designing the proof based on properties and a characterization

of the specific group chosen. Finally, we adapt the masking of the input exponents, as used in

Section 3.3 to achieve privacy, to work for Z∗n .
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4.1 Number Theory Definitions and Facts
Basic definitions. For any prime b and an element v ∈ Z∗p , the Legendre symbol (v |b) of v mod b is

defined as equal to +1 if v is a quadratic residue modulo b and −1 otherwise. Using Euler’s theorem,

the Legendre symbol can be computed by one exponentiation modulo b.
Let c = ab, for primes a,b. For any integer v ∈ Z∗c , we know that v is a quadratic residue modulo

c if and only if (v |b) = 1 for any prime b dividing c (see, e.g., [25]). For any v ∈ Z∗c , the Jacobi
symbol (v |c) of v mod c is defined as equal to (v |a) · (v |b). Thus, if (v |c) = −1 then v is a quadratic

non residue modulo c , as it is a quadratic non residue modulo at least one of the primes dividing

c . On the other hand, if (v |c) = 1 then no efficient algorithm is known to compute whether v is a

quadratic residue or non residue modulo c . For any v1,v2 ∈ Z
∗
c , let ∼c be the relation defined as

v1 ∼c v2 = the quadratic residuosity of v1v2 mod c . We note that ∼c is an equivalence relation

and the set of quadratic residues modulo c is an equivalence class for this relation; moreover, for

anyv ∈ Z∗c , the set of integers {vq | q is a quadratic residue mod c} is an equivalence class for this

relation. This implies the following characterization: Z∗c is divided by relation ∼c into 4 equal-size

equivalence classes, of which one is the class of quadratic residues modulo c , one is the class

of quadratic non residues modulo c with Jacobi symbol +1, and the remaining 2 classes contain

quadratic non-residues modulo c with Jacobi symbol -1.

Useful facts. Let p,q,p1,q1 be large, same-length, primes, such that p = 2p1 + 1, q = 2q1 + 1,

and let n = pq. Let Z∗n denote the set of integers coprime with n. Note that the order of Z∗n is

ϕ(n) = (p−1)(q−1) = 4p1q1. For any e such that gcd(e,ϕ(n)) = 1, define the function Fn,e : Z∗n → Z
∗
n

as Fn,e (x) = xe mod n. Here, n, e are assumed to be part of desc(Fn,e ). In what follows, we prove

two facts that will be critical in proving security of our batch delegation protocols for the function

Fn,e .

Consider the following 3 observations. First, when n has this special form, −1 mod n is a

quadratic non residue modulo n with Jacobi symbol (−1|n) = (−1|p) · (−1|q) = (−1) · (−1) = +1.
Second, note that by Lemma 1 of [28] every quadratic residue mod n has a square root of Jacobi

symbol 1 and a square root of Jacobi symbol -1. Third, note that if r is a square root of y mod n
then so is −r mod n. By combining these 3 observations, we obtain that every quadratic residue

mod n has 4 square roots modulo n, which can be written as r−1, r+1,−r−1 mod n,−r+1 mod n,
and such that, as seen by a case analysis, each of them is in a different ∼n equivalence class. For

integer 1, its square roots modulo n can be further characterized as 1,−1, r ,−r mod n, for some

r ∈ Z∗n with Jacobi symbol −1, where again each of these roots is in a different ∼n equivalence

class, and 1 is the root in the class of quadratic residues modulo n. Thus, any fourth root modulo n
of 1 is also a square root modulo n of 1, which proves the following

Fact 2. In Z∗n there are no elements of order 4.

Now, consider elements x ,y ∈ Z∗n and let α = y/xe mod n. Assume α has order 2; that is,

α2 = 1 mod n. Recall the above characterization that square roots of 1 mod n can be written

as 1,−1, r ,−r mod n, for some r ∈ Z∗n with Jacobi symbol −1, where each of these roots is in a

different ∼n equivalence class, and 1 is the root in the class of quadratic residues modulo n. Then,
α , 1 and thus it is a quadratic non-residue mod n. Because xy = αxe+1 mod n, and e is odd, xy
is also not a quadratic residue modulo n, which proves the following.

Fact 3. Let ϕ(n) = (p−1)(q−1), x ,y ∈ Z∗n , and let e ∈ Zϕ(n) such that gcd(e,ϕ(n))=1. If α = y/xe

mod n has order 2 then xy mod n is a quadratic non residue modulo n.
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4.2 Batch Delegation with No Offline Phase or Input Privacy
Our first protocol for delegating multiple known-exponent unknown-base exponentiations in group

Z∗n satisfies the following

Theorem 4.1. Let p,q,p1,q1 be large, same-length, primes, such that p = 2p1 + 1, q = 2q1 + 1,
and let n = pq; let σ be the computational security parameter associated with the group Z∗n and let

λ be a statistical security parameter. There exists (constructively) a client-server protocol (C, S) for
batch delegation of the computation of function Fn,e onm inputs, which satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2
−λ
;

3. (tF , tS , tP , tC , cc,mc)-efficiency, where

• tC = 2m + 2tprod,m,exp (λ) + texp (σ )
• tF =m · texp (σ )
• tS = 2m · texp (σ )
• cc = 3m elements in Z∗n
• tP = 0 andmc = 2.

As with Theorem 3.1, the main takeaway from the above theorem is that delegation to a single

(potentially malicious) server allows C to computem exponentiations faster than by computing

them without delegation, the improvement being a multiplicative factor ofO(σ/λ). In what follows,

we informally and formally describe our protocol (C, S) and prove its properties, as claimed in the

theorem.

Informal description of the protocol (C, S). As in Section 3, our protocol’s starting point is the

idea discussed in the Introduction: C sends them exponents to S , S sendsm elements to C , and C
checks that these elements were correctly computed using the small-exponent verification test

from [1]. In Section 3, this idea fell short because this test was only defined and proved sound

when the elements sent by S are in the (cyclic) group, and we dealt with this problem by designing

an efficiently verifiable proof that each exponentiation sent by S is in the subgroup Gq of Z∗p . In
this section, our group, Z∗n , is neither cyclic nor it has prime order, and none of the tests in [1]

directly applies. In our effort to adapt the small-exponents verification test from [1], the main

problem we encounter (also discussed in [3]) is related to low-order group elements that, when

used by S in his answer, may significantly reduce the success probability of the test. Accordingly,

we design an efficiently verifiable proof that no low-order group elements were used by S in his

answer, which we prove to suffice based on (a suitable variant of) the previous analysis for the

soundness of the small-exponent verification test, as well as number-theoretic facts established in

Section 4.1. Our main novel technical contribution is a careful analysis of the structure of Z∗n , where
n = pq, p = 2p1 + 1, q = 2q1 + 1, for p,q,p1,q1 primes, and a non-trivial use of a proof of quadratic

residuosity as a proof that low-order group elements either do not exist or are not contained among

the elements sent by S .

Formal description of the protocol (C, S).

Input to S and C: 1σ , 1λ , desc(Fn,e )
Input to C: x1, . . . ,xm ∈ Z∗n
Instructions for C and S:
(1) C sends x1, . . . ,xm to S
(2) For i = 1, . . . ,m,

S computes yi = xei mod n

S computes ti = x (e+1)/2i mod n
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S sends y1, . . . ,ym , t1, . . . , tm to C
(3) For i = 1, . . . ,m,

if ti or yi < Zn then C returns: ⊥ and halts

if t2i , xiyi mod n then C returns: ⊥ and halts

C randomly chooses s1, . . . , sm ∈ {1, . . . , 2
λ}

C computes x =
∏m

i=1 x
si
i mod n

C computes y =
∏m

i=1 y
si
i mod n

if xe , y mod n then C returns: ⊥ and halts

C returns: (y1, . . . ,ym).

Properties of the protocol (C, S): The efficiency properties are verified by protocol inspection

and are very similar to those of the protocol in Section 3.2. As for the round complexity, the protocol

only requires one round, consisting of one message from C to S followed by one message from

S to C . As for the communication complexity, the protocol requires the transfer ofm elements of

Z∗n from C to S and 2m elements of Z∗n from S to C . As for the runtime complexity, S performs 2m
exponentiations to σ -bit exponents, C performs 2 products ofm exponentiations to λ exponents, 1

exponentiation to a σ -bit exponent and 2m multiplications to check if t2i = xiyi mod n. Note that
to check if ti or yi < Zn , C only needs O(σ ) time, much less than a multiplication in Z∗n , and we

essentially ignore it in our calculations.

The correctness property follows by showing that if C and S follow the protocol, C always outputs

(y1, . . . ,ym) such that yi = xei mod n for all i = 1, . . . ,m. First, we observe that C does not halt

because of the conditions ‘ti or yi < Zn ’ or ‘t
2

i , xiyi mod n’. This is because for all i = 1, . . . ,m,

S computes yi as x
e
i mod n and thus yi ∈ Z

∗
n , and

t2i =
(
x (e+1)/2i

)
2

= xe+1i = xi (x
ei
i ) = xiyi mod n.

Then, we observe thatC does not halt because of the condition ‘xe , y mod p’, by the correctness

of the small-exponent batch verification test over Z∗n (see, e.g., [3]).

To prove the security property against a malicious S , assume that S sends to C at least one value

yi such that yi , Fn,e (x) for some i ∈ {1, . . . ,m}. We need to compute an upper bound ϵs on the

security probability that S convincesC to output such a yi . For all i = 1, . . . ,m, define αi = yi/(xi )
e

mod n. We obtain that ϵs = 2
−λ
, as a consequence of the following 5 claims:

(1) for all i = 1, . . . ,m, if yi < Zn then C outputs ⊥

(2) for all i = 1, . . . ,m, if yi ∈ Zn \Z
∗
n thenC outputs ⊥ because of the condition ‘xe , y mod n’

(3) if y1, . . . ,ym ∈ Z
∗
n , and for at least one value j ∈ {1, . . . ,m}, α j has order > 4,C does not halt

because of the condition ‘xe , y mod n’ with probability at most 2
−λ

(4) if y1, . . . ,ym ∈ Z
∗
n and α1, . . . ,αm have order ≤ 4, then either α1 = · · · = αm = 1 or C halts

because of the condition ‘t2i = xiyi mod n’;

(5) if all of C’s checks in the protocol are satified, then, except with probability 2
−λ
, it holds that

αi = 1, and thus yi = (xi )
e

mod n, for all i = 1, . . . ,m.

Claim 1 directly follows by inspection of C’s instructions.
Claim 2 can be proved as follows: if yi ∈ Zn \ Z

∗
n for some i ∈ {1, . . . ,m} then yi is a multiple of

p or q over the integers. Wlog assume that yi is a multiple of p i.e. yi = p ∗ l for some l ∈ Zn . For
any si ∈ {1, . . . , 2

λ}, we have that

ysii = (p ∗ l)
si = p ∗ (psi−1 ∗ lsi )
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which, together with the fact that n is a multiple of p, implies that

ysii mod n = p ∗ (psi−1 ∗ lsi ) − kpq = p ∗ (psi−1 ∗ lsi − kq),

for some integer k , from which we have that ysii mod n is also a multiple of p, thus showing that

{ysii mod n} ∈ Zn \ Z
∗
n . Finally, observe that y =

∏m
j=1 y

sj
j mod n is also a multiple of p since ysii

is multiple of p for some i ∈ {1, · · · ,m} which implies that {
∏m

j=1 y
sj
j mod n} ∈ Zn \ Z

∗
n . But on

the other hand x j ∈ Z
∗
n for all j ∈ {1, . . . ,m} (i.e. x j is not multiple of p or q) then, by group closure,

xe =
∏m

j=1(x
sj
j )

e
mod n is not multiple of p or q (i.e. xe ∈ Z∗n). Therefore the last check xe = y

mod n is not satisfied and C halts the protocol, from which the claim follows.

Claim 3 follows by the soundness of the small-exponent batch verification test over Z∗n , as follows.
First, note that the condition xe = y mod n can be rewritten as Πm

i=1α
si
i = 1 mod n, using the

definition of αi and the following two facts:

(1) xe = (Πm
i=1(xi )

si )e = Πm
i=1((xi )

e )si mod n,
(2) y = Πm

i=1(yi )
si

mod n.

Now assume, without loss of generality, that the j ∈ {1, . . . ,m} such that α j has order > 4 is

actually j = 1. Recall that by Lagrange’s theorem in group theory, the order of any element in Z∗n is

a divisor of ϕ(n) = (p − 1)(q − 1) = 4p1q1, for primes p1,q1. Therefore, the order of α1 is at least
min(p1,q1). Now, assume that the condition Πm

i=1α
si
i = 1 mod n is satisfied for a particular tuple

(s1, . . . , sm); this also means that

α s1
1
= Πm

i=2 α
−si
i mod n. (1)

We observe that for any s2, . . . , sm , since α1 has order at least min(p1,q1), which is much larger

than 2
λ
, there is at most one s1 ∈ {1, . . . , 2

λ} such that Equation 1 holds. Thus, for fixed s2, . . . , sm ,

the probability that this equality holds is at most 2
−λ

sinceC chooses s1 uniformly from {1, . . . , 2λ}.
Hence, the probability that equality (1) holds is at most 2

−λ
even when all of s2, . . . , sm are chosen

independently and uniformly from {1, . . . , 2λ}, and the claim follows.

Claim 4 follows by combining Fact 2 and Fact 3 from Section 4.1. First, Fact 2 proves that when n
has the special form we are considering, there are no integers of order 4 in Z∗n . Second, Fact 3 proves
that if α j has order 2, then x jyj mod n is not a quadratic residue modn, which makesC halt because

the check ‘t2i = xiyi mod n’ cannot be satisfied. Thus, we obtain that either α1 = · · · = αm = 1 or

C halts because of the condition ‘t2i = xiyi mod n’, from which the claim follows.

Claim 5 follows by combining claims 1-4. □

4.3 Batch Delegation with Input Privacy and Offline Phase
Our second protocol for delegating multiple known-exponent unknown-base exponentiations in

group Z∗n satisfies the following

Theorem 4.2. Let p,q,p1,q1 be large, same-length, primes, such that p = 2p1 + 1, q = 2q1 + 1; let
n = pq, let σ be the computational security parameter associated with the group Z∗n , and let λ be a

statistical security parameter. There exists (constructively) a client-server protocol (C, S) for batch
delegation of the computation of function Fn,e onm inputs, which satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2
−λ
;

3. ϵp -privacy, for ϵp = 0;

4. (tF , tS , tP , tC , cc,mc)-efficiency, where

• tC = 4m + 2 · tprod,m,exp (λ) + texp (σ )
• tF =m · texp (σ )
• tP =m · (tinv (σ ) + texp (σ ))
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• tS = 2m · texp (σ )
• cc = 3m values in Z∗n , andmc = 2.

Protocol (C, S) is obtained by applying protocol techniques from Section 3.3 and a variant of the

exponent masking technique from Section 3.3 to the protocol for Z∗n in Section 4.2. Specifically,

the protocol techniques for delegating multiple unknown-exponent known-base exponentiations

over Z∗p from Section 3.2 are adapted to delegating multiple known-exponent unknown-base

exponentiations over Z∗n . This requires, for each input element, the computation in the offline phase

of an inverse element in Z∗n and, the computation of 2 additional multiplications in the online phase.

Formal description of protocol (C, S).
Input to S: 1σ , 1λ , desc(Fn,e )

Input to C: 1σ , 1λ , desc(Fn,e ), x1, . . . ,xn ∈ Z∗n ,
Offline phase instructions:

(1) For i = 1, . . . ,m
C randomly chooses ui ∈ Z

∗
n and si ∈ {1, . . . , 2

λ}

C sets u ′i = u
−1
i mod n and vi = (u

′
i )
e

mod n

Online phase instructions:
(1) For i = 1, . . . ,m

C sets zi := (xi · ui ) mod n
C sends z1, . . . , zm to S

(2) For i = 1, . . . ,m,

S computeswi = zei mod n

S computes ti = z(e+1)/2i mod n
S sendsw1, . . . ,wm , t1, . . . , tm to C

(3) For i = 1, . . . ,m,

if ti orwi < Zn then C returns: ⊥ and halts

if t2i , zi ·wi mod n then C returns: ⊥ and halts

C computes z =
∏m

i=1 z
si
i mod n

C computesw =
∏m

i=1w
si
i mod n

if ze , w mod n then C returns: ⊥ and halts

C sets yi := wi · vi mod n for all i = 1, . . . ,m
C returns: (y1, . . . ,ym).

The proof of the properties of (C, S) are obtained as a direct combination of proofs for Theorem 4.1

and Theorem 3.2.

Properties of the protocol (C, S): The efficiency properties are verified by protocol inspection.

Round and communication complexity are the same as for our previous protocols. As for the

runtime complexity, we consider both the offline and the online phase. During the offline phase C
performsm inversions of random σ -bit base,m exponentiations with fixed exponent andm inverses.

During the online phase, S performs 2m exponentiations to σ -bit exponents, and C performs 2

products ofm exponentiations to λ-bit exponents, 1 exponentiation to a σ -bit exponent andm
multiplications for masking xi (i.e. zi = (xi · ui ) mod n), 2m multiplications to check if t2i = xiyi
mod n andm multiplications to calculate yi (i.e. yi = wi · vi mod n, thus total 4m multiplications

(only 2m more multiplications than in the previous protocol).

The correctness property follows by showing that if C and S follow the protocol, C always outputs

(y1, . . . ,yn) such thatyi = xei mod n for all i = 1, . . . ,n. Similarly as done for our previous protocol,

, Vol. 1, No. 1, Article . Publication date: February 2019.



Batch Delegation of Exponentiation :17

we show that C does not halt because of the conditions ‘ti orwi < Zn ’ or ‘t
2

i , zi ·wi mod n’, or
‘ze , w mod n’. Then, the correctness of C’s output follows by observing that, for i = 1, . . . ,n,

yi = wi · vi = zei · (u
′
i )
e = (xi · ui )

e · (u−1i )
e = xei .

The privacy property of the protocol against a malicious S follows by observing that C’s only
message to S does not leak any information about xi for all i = 1, . . . ,n. This message is (z1, . . . , zn)
where zi = xi ∗ ui mod n, for u1, . . . ,un uniformly and independently distributed in Z∗n , and thus

the z1, . . . , zn values are uniformly distributed in Z∗n and independent from x1, . . . ,xn .

To prove the security property against a malicious S , we need to compute an upper bound ϵs on the

security probability that S convinces C to output (y1, . . . ,ym), where at least one value yi satisfies
yi , Fn,e (xi ) for some i ∈ {1, . . . ,m}. For all i = 1, . . . ,m, define αi = wi/(zi )

e
mod n. We obtain

that ϵs = 2
−λ
, as a consequence of the following 6 claims:

(1) for all i = 1, . . . ,m, if ti orwi < Zn then C outputs ⊥

(2) for all i = 1, . . . ,m, if wi ∈ Zn \ Z
∗
n then C outputs ⊥ because of the condition ‘ze , w

mod n’
(3) if w1, . . . ,wm ∈ Z

∗
n , and for at least one value j ∈ {1, . . . ,m}, α j has order > 4, C does not

halt because of the condition ‘ze , w mod n’ with probability at most 2
−λ

(4) ifw1, . . . ,wm ∈ Z
∗
n and α1, . . . ,αm have order ≤ 4, then either α1 = · · · = αm = 1 or C halts

because of the condition ‘t2i = ziwi mod n’;

(5) if all of C’s checks in the protocol are satified, then, except with probability 2
−λ
, it holds that

αi = 1, and thuswi = (zi )
e

mod n, for all i = 1, . . . ,m;

(6) for all i = 1, . . . ,m, ifwi = (zi )
e

mod n then yi = (xi )
e

mod n.

Claim 1-5 are proved as done for our protocol in Section 4.2, and Claim 6 directly follows by

inspection of C’s instructions. □

5 PERFORMANCE ANALYSIS
In Theorems 3.1, 3.2, 4.1, and 4.2 we have expressed the performance of our protocols in terms of

group multiplication operations, and parameterized by functions texp , tm,exp , tprod,m,exp . Among

the different ways to express these functions in terms of group multiplication operations, here we

pick the following two: a basic setting (using definitions and textbook algorithms), and an improved

setting (using state-of-the-art algorithms). As a basic setting, one can obtain:

• texp (ℓ) = 2ℓ using the square-and-multiply algorithm for modular exponentiation,

• tm,exp (ℓ) =m · texp (ℓ), by definition,

• tprod,m,exp (ℓ) =m · texp (ℓ) +m − 1, by definition.

Using improved algorithms from the literature (specifically, we use closed-form estimates in [2]

for algorithms in [5, 6, 27, 29], but see also [12, 22] for other algorithms claiming improvements

without closed-form evaluations), we can define the following improved setting:

• texp (ℓ) ∼ ℓ(1 + 1/(log ℓ)),
• tm,exp (ℓ) ∼ ℓ(1 +m/(log ℓ)),
• tprod,m,exp (ℓ) ∼ ℓ(1 +m/(logm + log ℓ)).

In Table 1 we compare the performance of our Section 3 protocols under the basic setting of these

functions, with a non-delegated computation under both basic and improved settings.

The main takeaway from Table 1 is that our protocols in Section 3 reduce C’s online computation

tC by a multiplicative factor of about σ/λ (resp., (σ log λ)/(λ logσ )) with respect to non-delegated
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Table 1. Performance of our first 2 protocols, parameterized inm, λ,σ

Metric

Fp,q,д , with no delegation Fp,q,д , with delegation, basic
Basic setting Improved setting Section 3.2 Section 3.3

tF 2mσ σ (1 +m/logσ ) 2mσ 2mσ
tP 0 0 0 2mσ
tC 2mσ σ (1 +m/logσ ) 2σ + 2mλ + 3m 2σ + 2mλ + 4m
tS 0 0 4mσ 4mσ
ϵp 0 0 None 0

ϵs 0 0 2
−λ

2
−λ

Table 2. The number tC of C’s group multiplications in our 4 protocols, when σ = 2048 and λ = 128

m No Delegation Section 3 Section 4
3.2 3.3 4.2 4.3

2 8,192 4,614 4,616 5,128 5,130

10 40,960 6,686 6,696 9,256 9,266

100 409,600 29,996 30,096 55,696 55,796

1K 4,096K 263K 264K 520K 521K

2 2,420 2,398 2,400 2,558 2,560

10 3,909 2,506 2,516 2,758 2,768

100 20,666 3,500 3,600 4,566 4,666

1K 188K 11,906 12,906 19,578 20,578

computation, when using the basic (resp., improved) setting of the t functions. Given currently

recommended parameter settings (i.e., σ = 2048 and λ = 128), our protocols for Fp,q,д reduce C’s
online computation by essentially 1 order of magnitude. It also makes sense to compare our protocol

in Section 3.3 with a repeated execution, once for each exponentiation, of our recent protocol in

[15] for a single exponentiation in Gq . The two approaches are incomparable in that our protocol

in this paper has better off-line complexity, while the repeated execution of the protocol in [15]

would have better client runtime in the case of a small number of modular exponentiations.

Protocols in Section 4 can be used to generate a similar table, the only difference being in

tC = 2σ + 4mλ + 4m for the protocol in Section 4.2 and tC = 2σ + 4mλ + 5m for the protocol in

Section 4.3. Thus, the reduction of tC with respect to non-delegated computation achieved for Fn,e
is essentially the same (only a factor of 2 smaller) as for Fp,q,д .

By setting σ = 2048 and λ = 128 (currently recommended parameter settings for cryptographic

applications), we obtain and capture in Table 2 concrete numbers for tC (i.e., C’s group multiplica-

tions in the online phase), with respect to both basic (rows 1-4) and improved (rows 5-8) settings

for the t functions. On protocols from Section 3, we note an improvement of half to slightly more

than 1 order of magnitude, depending on the value ofm. On protocols from Section 4, we note

similar improvements, although starting fromm ≥ 10.

We implemented our protocols in Sections 3.2, 3.3, 4.2 and 4.3 for the multiplicative group (Z∗p , ·

mod p), for p = 2q + 1, and p,q are large primes such that σ ∈ {1024, 2048} and the security

parameter λ = 128 (i.e. ϵs = 2
−128

). Our implementation was carried out on a macOS High Sierra

Version 10.13.4 laptop with 2.7 GHz Intel Core i5 processor with memory 8 GB 1867 MHz DDR3.

The protocols were coded in Python 3.6 using the gmpy2 package. Performance data measured

, Vol. 1, No. 1, Article . Publication date: February 2019.



Batch Delegation of Exponentiation :19

Table 3. Performance data (in sec.) for protocol in Section 3.2, σ = 2048

m 2 10 100 1000
SM NoSM SM NoSM SM NoSM SM NoSM

tF 3.097E-02 7.610E-03 1.555E-01 3.667E-02 1.554E+00 3.732E-01 1.652E+01 3.698E+00

tC 1.755E-02 4.435E-03 2.537E-02 6.317E-03 1.124E-01 3.128E-02 1.041E+00 2.665E-01

tS 6.218E-02 1.536E-02 3.108E-01 7.282E-02 3.123E+00 7.397E-01 3.308E+01 7.431E+00

tF
tC

1.765E+00 1.716E+00 6.132E+00 5.805E+00 1.383E+01 1.193E+01 1.587E+01 1.388E+01

Table 4. Performance data (in sec.) for protocol in Section 3.3, σ = 2048

m 2 10 100 1000
SM NoSM SM NoSM SM NoSM SM NoSM

tF 3.596E-02 7.056E-03 1.625E-01 3.616E-02 1.685E+00 3.748E-01 1.611E+01 3.742E+00

tP 3.976E-02 7.108E-03 1.632E-01 3.639E-02 1.660E+00 3.737E-01 1.602E+01 3.768E+00

tC 2.075E-02 4.101E-03 2.632E-02 6.314E-03 1.197E-01 3.127E-02 1.010E+00 2.813E-01

tS 7.464E-02 1.412E-02 3.253E-01 7.240E-02 3.333E+00 7.575E-01 3.217E+01 7.493E+00

tF
tC

1.732E+00 1.721E+00 6.173E+00 5.727E+00 1.408E+01 1.199E+01 1.595E+01 1.330E+01

Table 5. Performance data (in sec.) for protocol in Section 4.2, σ = 2048

m 2 10 100 1000
SM NoSM SM NoSM SM NoSM SM NoSM

tF 3.589E-02 7.245E-03 2.014E-01 3.536E-02 1.918E+00 3.543E-01 1.711E+01 3.542E+00

tC 2.264E-02 4.651E-03 4.451E-02 8.571E-03 2.491E-01 5.343E-02 2.070E+00 5.030E-01

tS 7.278E-02 1.462E-02 4.062E-01 7.063E-02 3.834E+00 7.050E-01 3.415E+01 7.106E+00

tF
tC

1.585E+00 1.558E+00 4.525E+00 4.125E+00 7.701E+00 6.631E+00 8.266E+00 7.042E+00

for all four protocols from Sections 3.2, 3.3, 4.2 and 4.3 is grouped in four tables. In each table we

report performance data for one of our protocols, by measuring running times tF , tC , tS , and tP (if

it is applicable in the protocol), and improvement ratio tF /tC , for different values of parameterm
(i.e.,m = 2, 10, 100, 1000), and using both an implementation of the modular exponentiation based

on the textbook square-and-multiply algorithm (in column labelled ‘SM’) and the Python built-in

function gmpy2.powmod (in column labelled ‘NoSM’). Our empirical results essentially confirm

the theoretical analysis, showing that our delegation protocols reduce C’s online computation by

about 1 order of magnitude.

6 CONCLUSIONS
We studied the problem of a client efficiently, privately and securely delegating the computation of

multiple group exponentiations to a more computationally powerful server (i.e., a cloud server).

We presented the first practical and provable solutions to this batch delegation problem for groups

commonly used in cryptography, based on discrete logarithm and RSA hardness assumptions. Our

results directly solve batch delegation of various algorithms in widely used cryptosystems, including

RSA encryption with large exponents and key contribution in Diffie-Hellman key agreement

protocols. Open problems specific to our results include designing efficient, secure and private

protocols that do not require an off-line phase. Open research directions related to this area include
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Table 6. Performance data (in sec.) for protocol in Section 4.3, σ = 2048

m 2 10 100 1000
SM NoSM SM NoSM SM NoSM SM NoSM

tF 3.428E-02 7.087E-03 1.702E-01 3.559E-02 1.572E+00 3.542E-01 1.585E+01 3.633E+00

tP 3.431E-02 7.244E-03 1.706E-01 3.604E-02 1.578E+00 3.601E-01 1.576E+01 3.684E+00

tC 2.140E-02 4.566E-03 3.753E-02 8.834E-03 2.055E-01 5.458E-02 1.935E+00 5.280E-01

tS 6.835E-02 1.413E-02 3.404E-01 7.090E-02 3.152E+00 7.095E-01 3.556E+01 7.269E+00

tF
tC

1.602E+00 1.552E+00 4.535E+00 4.028E+00 7.650E+00 6.489E+00 8.193E+00 6.880E+00

the batch delegation of operations in elliptic curve groups or lattices used in cryptography, or of

other cryptographic algorithms and protocols.
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