Hashing with Polynomials

Vladimir Shpilrain

Department of Mathematics, The City College of New York, New York, NY 10031
shpil@groups.sci.ccny.cuny.edu *

Abstract. In this paper, we explore potential mathematical principles
and structures that can provide the foundation for cryptographic hash
functions, and also present a simple and efficiently computable hash func-
tion based on a non-associative operation with polynomials over a finite
field of characteristic 2.

1 Introduction

Hash functions are easy-to-compute compression functions that take a variable-
length input and convert it to a fixed-length output. Hash functions are used as
compact representations, or digital fingerprints, of data and to provide message
integrity. Some hash functions in current use have been shown to be vulner-
able. In [6], the author argues that their replacements should be based on a
mathematical theory, which has yet to be created.

Before such a theory can be created, one has to describe, as detailed as
possible, mathematical properties that a “good” hash function should have. Of
course, basic requirements are well known:

1. Preimage resistance (sometimes called non-invertibility): it should be com-
putationally infeasible to find an input which hashes to a specified output;

2. Second pre-image resistance: it should be computationally infeasible to find
a second input that hashes to the same output as a specified input;

3. Collision resistance: it should be computationally infeasible to find two dif-
ferent inputs that hash to the same output.

Now the problem is to determine mathematical properties of a hash function
that would ensure (or at least, make it likely) that the requirements above are
met.

Early suggestions (especially the SHA family) did not really use any mathe-
matical ideas apart from the Merkle-Damgard construction for producing collision-
resistant hash functions from collision-resistant compression functions (see e.g. [7]);
the main idea was just to “create a mess” by using complex iterations (this is
not meant in a derogatory sense, but just as an opposite of using mathematical
structure one way or another). We have to admit that a “mess” might be good for
hiding purposes, but only to some extent. In particular, several early suggestions

* Partially supported by the NSF grant DMS-0405105 and by an NSA grant.

were successfully attacked, see e.g. [10]. However, the market has its own rules,
and a product that has won the market is unlikely to be replaced by something
altogether different; it is more likely that it will be slightly adjusted every time
the older version becomes outdated for one reason or another. In other words,
in 20 years from now, something like SHA-32768 is more likely to be commer-
cially used than any hash function based on mathematical ideas. To be fair, we
have to mention an interesting direction, namely, constructing hash functions
being provably as secure as underlying assumptions, e.g. as discrete logarithm
assumptions; see [4] and references therein. These hash functions however tend
to be not very efficient. For a general survey of hash functions we refer to [7].

One especially discouraging example of the trend of ignoring elegant math-
ematical ideas is the Tillich-Zémor hash function [9], which is quite simple, ef-
ficient, and intelligent, and yet it was almost completely ignored; for example,
Google search for this hash function produces about 200 results, compared to
over 18,000,000 for SHA-1. This, by any standards, is not healthy, especially
since at this time, there is no compelling reason to doubt the security of the
Tillich-Zémor hash function. To the best of our knowledge, there are just 3
published papers [3], [5], [8] offering “attacks” (i.e., exposing collisions) on this
hash function for some very special values of parameters. For “generic” values
of parameters, the Tillich-Zémor hash function withstands all known attacks;
in particular, it was shown in [1] that it is vulnerable to the attack of [3] with
probability of (approximately) 10727, Of course, it is difficult to prove collision
resistance of the Tillich-Zémor hash function, but this is true for most other hash
functions, too. (We note that recently, a proposal for a hash function has been
made [2] where collision resistance follows from the alleged hardness of a mathe-
matical problem related to expander graphs; the authors of [2] acknowledge that
one of their constructions is similar to that of Tillich and Zemor.)

In this paper, we try to somewhat remedy the situation. First, in Sections 2
and 3, we use the Tillich-Zémor hash function as a model example to analyze
mathematical principles and structures behind a secure and efficient hash func-
tion. We speculate that a successful hash function should be based on a (finite)
dynamical system, of which the Tillich-Zémor construction is a nice example.

Then, in Section 4, we present a simple and efficiently computable hash
function which is based on essentially the same dynamical system as the Tillich-
Zémor hash function is. In particular, it has the advantages of the Tillich-Zémor
hash function, but does not have its (potential) weaknesses. We suggest specific
parameters for our hash function in Section 5. However, we have to say up front
that our proposal is on a conceptual level; in particular, while our hash function
is obviously (by comparing the definitions) more efficient than that of Tillich-
Zémor, we do not report actual runtimes here.

2 Tillich-Zémor hash function: three useful features

The Tillich-Zémor hash function, unlike functions in the SHA family, is not a
block hash function, i.e., each bit is hashed individually. More specifically, the

“0” bit is hashed to a particular 2 x 2 matrix A, and the “1” bit is hashed to
another 2 x 2 matrix B. Then a bit string is hashed simply to the product of
matrices A and B corresponding to bits in this string. For example, the bit string
1000110 is hashed to the matrix BA3B2A.

Obviously, this kind of arrangement is possible with any pair of elements
A, B of any semigroup S. The question is: what choice of semigroup S and
elements A, B makes the corresponding hash function secure? We argue here
that the choice made by Tillich and Zémor in [9] has three useful features which
are, in our opinion, significant for cryptographic security in general and for the
security of a hash function in particular.

First we recall that Tillich and Zémor use matrices A, B from the group
SLy(R), where R is a commutative ring (actually, a field) defined as R =
Fy[z]/(p(z)). Here Fy is the field with two elements, Fa[z] is the ring of poly-
nomials over Fy, and (p(x)) is the ideal of Fa[z] generated by an irreducible
polynomial p(z) of degree n (typically, n is a prime, 127 < n < 170); for exam-
ple, p(x) = 213 + 27+ 26 + 25+ 2t + 2+ 1. Thus, R = Fa[z]/(p(z)) is isomorphic
to Fan, the field with 2™ elements.

Then, the matrices A and B are:

_(al _(aa+1l
=(io) =it
where « is a root of p(z).

Now the three useful features of the Tillich-Zémor hash function are:

1. The commutativity of the ring R is good for “diffusion”, i.e., for hiding oc-
currences of A or B in a product.

2. The periodicity of the ring R, too, is good for “diffusion”. (Periodicity means
that for any u € R, there is a positive integer m such that u™ = u.)

3. The non-commutativity of matrix multiplication prevents from obvious col-
lisions. For example, were the multiplication commutative, the bit strings
“01” and “10” would hash to the same thing.

We emphasize once again that
COMMUTATIVITY and PERIODICITY

are two major tools for hiding factors in a product; their importance for crypto-
graphic security in general and for the security of a hash function in particular
cannot be overestimated. Furthermore, a commutative and periodic platform
gives rise to a dynamical system, where two functions (corresponding to the “0”
and the “1” bits) act in a rather complex way. Dynamical systems with a large
number of states, even “innocent-looking” ones, usually exhibit very complex be-
havior; it is sufficient to mention the notorious “3x+1” problem. In particular,
any instances of re-occurring state are usually very difficult to predict (again,
recall the “3x+1” problem). In the context of hash functions, those correspond
to collisions, thus making the latter difficult to detect.

At the same time, for better security, commutativity might be reinforced by
non-commutativity pretty much the same way as concrete is reinforced by steel
to produce ferroconcrete. Thus,

COMMUTATIVITY in the corset of NON—-COMMUTATIVITY

is another important ingredient of cryptographic security. It prevents the at-
tacker from using obvious “relations”, such as ab = ba, to simplify a product.

To conclude this section, we say a few words about the efficiency of the Tillich-
Zémor hash function. Computing this function involves the following operations
with polynomials over Fs:

1. Multiplication and addition of polynomials in « of degrees bounded by that
of the polynomial p(x).

2. Division of a polynomial in « whose degree is at most twice the degree of
p(z), by the polynomial p(«).

These operations are quite efficient; in fact, their time complexity is bounded
by a constant which depends only on (the degree of) the polynomial p(z). Since
the suggested degree of p(z) is fairly small (see above), the constant in question
is small, too.

3 Tillich-Zémor hash function: two potential weaknesses

In this section, we discuss two features of the Tillich-Zémor hash function which
may, in our opinion, yield undesirable trapdoors.

(i) The matrices A and B are invertible.
(ii) The operation (matrix multiplication) used in hashing is associative, i.e.,
a(bc) = (ab)c for any a,b,c € SLy(R).

These two features together may not be good from the security point of view,
for the following reasons. First, suppose the intruder knows part of a hashed
bitstring S: say, S = 5§1S5s, and assume the intruder knows S;1. Then, because of
the property (ii) above, we have for the hashes:

H(S) = H(S)) - H(S,). (1)

Since we assume that the intruder knows S;, he also knows H(S;), and
therefore, by using property (i) (invertibility of hashes) and the above equality,
he can recover H(Sz), thereby making it somewhat easier to recover Sp and then
S.

Another, more serious, weakness implied by the associativity is the following.
Suppose a collision is found, say, H(7;) = H(73) for some bitstrings 7, 75. Then
the equality (1) above yields, for any bitstring S: H(ST) = H(ST»). Thus, one
collision easily yields many other.

To be fair, we have to point out (see e.g. [8]) that the property (ii) above is
useful to make hashing more efficient because it allows one to parallelize com-
putation, e.g. to compute the hash H(S152) as H(S1) - H(Sa).

Finally, we note that a fairly well understood group structure of SLo(Fon)
may eventually help to find semigroup relations between the matrices A and B,
thus revealing a collision. In this sense, the absence of structure (i.e., a “mess”)
is something that can be borrowed from the SHA family in this context.

4 Hashing with polynomials

In this section, we present a simple and efficiently computable hash function
which has the advantages of the Tillich-Zémor hash function, but does not seem
to have its (potential) weaknesses.

Let R = For = Fy[z]/(p(z)) and « be as in the Tillich-Zémor construction
(see also our Section 2). Let P(«) and Q(«) be two elements of R; they are going
to be hashes of the “0” and the “1” bit, respectively:

H(0) = Pla), H(1) = Q).

The hash of the concatenation $1Ss of two bitstrings is computed by the
following recursive formula, which is only applied in the situations described below
(after the formula):

H(8185) = H(S1)oH (Ss) = H(S1)-H(S2)+(H(S1))?u1(a)+(H(S2))uz(a)+v(a),

where u;(«) and v(«) are some fixed elements of R. We note that the operation
o is non-associative and non-commutative if uq(a) # us ().
Now suppose S is a bitstring of length n > 2. To hash S:

1. Split S into blocks By, Bs, . .. of length 32 going left to right (the rightmost
block may therefore have smaller length).

2. Compute the hash of each block B; independently, going left to right bit by
bit and using the recursive formula above with Ss being a single bit every
time.

3. Compute the hash of § inductively, going left to right block by block and
using the recursive formula above with Sy being a single block B; every time.

We emphasize once again that if u; (a) # ua(«), then the operation o defined
above is non-associative and non-commutative. However, since the ring R itself
is commutative (and periodic), we take full advantage of commutativity and
periodicity as hiding tools here. In fact, our hash function is based on essentially
the same dynamical system as the Tillich-Zémor hash function; we just get rid
of the matrices to avoid associativity and invertibility. At the same time, since
our operation o is non-commutative, we have the “commutativity in the corset
of non-commutativity” property that was discussed in our Section 2.

Thus, our hash function has the same advantages as the Tillich-Zémor hash
function does. On the other hand, it does not have the weaknesses discussed
in our Section 3. Indeed, we have already mentioned that the operation o is
non-associative. It is also “non-invertible” in the following sense. If, for some
bitstring S = &1 Sz, you know H(S) and H(S;), this does not allow you to find
H(S,) the way it can be done for the Tillich-Zémor hash function.

Moreover, if you know H(S;) and H(Sz), this does not help you, in general,
to find H(S152), because the formula for H(S1S2) = H(S1) 0 H(S,) is applicable
only in very special cases of §; and Sa, see the definition above. This implies,
in particular, that knowing one collision does not immediately yield any other,
contrasting the situation with the Tillich-Zémor hash function (see the previous
section).

5 Parameters

In this section, we suggest particular polynomials that can be used in the de-
finition of a hash function given in the previous section. There is no specific
motivation behind this particular choice of parameters; as with most dynamical
systems, “generic” parameters yield sufficiently complex behavior of the system.

1. In the definition of R = Fon = Falx]/(p(x)), we suggest to take
px) =23 " + a2+t o+ 1

Thus, any bitstring will be hashed to a polynomial of degree at most 162
over Fy, which is equivalent to hashing to a 163-bit string.

2. In the definition of H(0) = P(«), H(1) = Q(«), we suggest to take
H0)=Pla)=a"+1, H()=Q(a)=0a®+1.
3. In the definition of

H(815:) = H(S1) 0 H(S2) = H(81) - H(S2) + (H(81))% - ua (@) + (H(S2))* -
us(a) + v(a), we suggest to take

ur(a) = o?, us(a) =, v(a)=1.
Thus, whenever applicable,
H(81S) = H(Sy) - H(S2) + (H(S1))? - a? + (H(S2))* -+ 1.
Below we give examples of computing H(S) for some simple bitstrings S.

1. H(00) = H(0)-H(0)+(H(0))?-a?+(H(0))?-a+1 = a'®+a®+al*+a?+a.

2. H(01) = H(0)- H(1) + (H(0))2 - a2 + (H(1))2 - a+1 = o7 + a6 + a5 +
a8 + a’ + a? + .

3. H(10) = H(1)-H(0)+ (H(1))2-a?+ (H(0))*-a+1 =a®+a® +a"+a? +a.

4. HO11) = HQ)-HQ)+(H1)? a2 +(H(1)? a+1 = a®+a'"+a5 +a?+a.

5. H(001) = H(00) - H(1) + (H(00))? - a® + (H(1))* - a+1 =
— a34+a32+a30+a24+a23+a22+a17+a16+a14+a10+a9+a6+a4+a2+1.

6. H(010) = H(01) - H(0) + (H(01))?- a® 4 (H(0))? - o +1 =
aSG+a34+a32+a24+a23—|—a22—|—a18+a15+a14+a9+a8+a7+a6+a4+a2—|—1.

7. H(110) = H(11) - H(0) + (H(11))2 - a® + (H(0))? - a+ 1 =
a38+a36+a34—|—a25+a24—|—a23—|—a18+a17+a16+a15+a9+a8+a6+a4+a2—|—1.

Acknowledgement. I am indebted to Rainer Steinwandt for numerous helpful
discussions.

References

1.

2.

t

&

10.

K. S. Abdukhalikov and C. Kim, On the Security of the Hashing Scheme Based
on SLa, in FSE 1998, Lecture Notes Comp. Sc. 1372 (1998), 93-102.

D. Charles, E. Goren, and K. Lauter, Cryptographic hash functions from ez-
pander graphs, preprint.
http://www.math.mcgill.ca/goren/PAPERSpublic/Hashfunction.pdf

C. Charnes and J. Pieprzyk, Attacking the SLa hashing scheme, in ASTACRYPT
1994, Lecture Notes Comp. Sc. 917 (1995), 322-330.

S. Contini, A. K. Lenstra and R. Steinfeld, VSH, an Efficient and Provable
Collision Resistant Hash Function, in: Eurocrypt 2006, Lecture Notes Comp.
Sc. 4004 (2006), 165-182.

W. Geiselmann, A Note on the Hash Function of Tillich and Zémor, in Cryp-
tography and Coding, Lecture Notes Comp. Sc. 1025 (1995), 257-263.

S. Landau, Find Me a Hash, Notices Amer. Math. Soc. 53 (2006), 330-332.

A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1997.

R. Steinwandt, M. Grassl, W. Geiselmann, T. Beth, Weaknesses in the SLa(Fan)
Hashing Scheme, in CRYPTO 2000, Lecture Notes Comp. Sc. 1880 (2000), 287—
299.

J.-P. Tillich and G. Zémor, Hashing with S L2, in CRYPTO 1994, Lecture Notes
Comp. Sc. 839 (1994), 40-49.

X. Wang, Y. L. Yin, and H. Yu, Finding Collisions in the Full SHA-1, in
CRYPTO 2005, Lecture Notes Comp. Sc. 3621 (2005), 17-36.

