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1 Introduction

Nielsen [14] gave the following commutator test for an endomorphism of the free
group F = F2 = 〈x, y;∅〉 to be an automorphism: an endomorphism φ : F → F
is an automorphism if and only if the commutator [φ(x), φ(y)] is conjugate in F
to [x, y]±1. He obtained this test as a corollary to his well-known result that
every IA-automorphism of F (i.e. one which fixes F modulo its commutator
subgroup) is an inner automorphism. Bachmuth et al. [4] have proved that IA-
automorphism of most two-generator groups of the type F/R′ are inner, and
it becomes natural to ask if Nielsen’s commutator test remains valid for those
groups as well. Durnev [6] considered this question for the free metabelian
group F/F ′′ and confirmed the validity of the commutator test in this case.
Here we prove that Nielsen’s test does not hold for a large class of F/R′ groups
(Theorem 3.1) and, as a corollary, deduce that it does not hold for any non-
metabelian solvable group of the form F/R′′ (Corollary 3.2). In view of our
Theorem 3.1, Nielsen’s commutator test in these situations seems to have less
appeal than his result that the IA-automorphisms of F are precisely the in-
ner automorphisms of F . We explore some applications of this important re-
sult with respect to non-tameness of automorphisms of certain two-generator
groups F/R (i.e. automorphisms of F/R which are not induced by those of
the free group F ). For instance, we show that a two-generator free polynilpo-
tent group F/V , V 6= F , has non-tame automorphisms except when V = γ2(F )
or V = γ3(F ), or when V is of the form [γn(U), γn(U)], n > 2 (Theorem 4.2).
This complements the results of [8] and [16] rather nicely, and it shown to fol-
low from a more general result (Proposition 4.1). We also include an example
of an endomorphism θ : x → xu, y → y of F which induces a non-tame auto-
morphism of F/γ6(F ) while the partial derivative ∂(u)/∂(x) is “balanced” in
the sense of Bryant et al. [5] (Example 4.4). This gives an alternative solution of
a problem in [5] which has already been resolved by Papistas [15] in the negative.
In our final section, we consider groups of the type F/[R′, F ] and, in contrast to
groups of the type F/R′, we show that the Nielsen’s commutator test does hold
in most of these groups (Theorem 5.1). We conclude with a sufficiency condition
under which Nielsen’s commutator test is valid for a given pair of generating
elements of F modulo [R′, F ] (Proposition 5.2).
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2 Notation and preliminaries

We use standard language of free group rings. For any unexplained notation or
terminology the reader may consult [9], Chapter I. Let F = 〈x, y;∅〉 be the free
group on x and y, and letR be a normal subgroup of F . There is a familiar action
via conjugation of the group ring Z(F/R) on the abelian group R/R′ under
which R/R′ becomes the relation module for F/R. Accordingly, there is a map
(F/R,R/R′)→ R/R′ defined by (fR, rR′)→ (f−1rf)R′, and linearly extended
to (Z(F/R), R/R′) → R/R′. Where the meaning is clear from the context, we
denote the elements of ZF and their natural images in Z(F/R) by the same
letters without ambiguity. Thus, for any v ≡

∑
i nifi mod ZF (R − 1), ni ∈ Z,

fi ∈ F and r ∈ R, the result of the action of
∑

i nifiR ∈ Z(F/R) on rR′ is
denoted by rvR′.

We denote by ∆F = ZF (F − 1) and ∆R = ZF (R − 1) the augmentation
ideals in ZF . Since ∆F is a free left ZF -module (as well as a free right ZF -
module) with basis {(x − 1), (y − 1)} (see [9, page 5]), every element z ∈ ∆F

can be written uniquely as

z = ∂z/∂x(x− 1) + ∂z/∂y(y − 1),

where ∂z/∂x, ∂z/∂y ∈ ZF are known as Fox (left) derivatives (cf. [7]). Similarly,
every element z ∈ ∆F can be written uniquely as

z = (x− 1)∂′z/∂′x+ (y − 1)∂′z/∂′y,

where ∂′z/∂′x, ∂′z/∂′y ∈ ZF are known as Fox (right) derivatives. We gather
some necessary facts about these derivatives in the following lemma. The general
reference is [9, Chapter I].

Lemma 2.1.

(a) Let J be an arbitrary ideal of ZF and let u ∈ ∆F . Then u ∈ J∆F if and
only if ∂u/∂x ∈ J and ∂u/∂y ∈ J ;

(b) If w ∈ γc(F ), c > 2, then ∂w/∂x, ∂w/∂y ∈ (∆F )c−1;

(c) Let r ∈ R and v ∈ ZF \ ∆R. If rv ≡ 1 (mod R′) then v∗∂r/∂x ≡ 0
(mod ∆R) and v∗∂r/∂y ≡ 0 (mod ∆R), where for v =

∑
i nifi, v

∗ =∑
i nif

−1
i .

[Since, modulo ∆R∆F , rf − 1 ≡ f−1(r − 1) for any f ∈ F , the proof of (c)
follows from F ∩ (1 + ∆R∆F ) = R′ using (a).]

Consider now an automorphism τ of F of the form

τ : x→ xr, y → ys where r, s ∈ F ′.

Then τ is an IA-automorphism and hence, by Nielsen’s characterization, τ must
be an inner automorphism x→ xf , y → yf , induced by some f ∈ F . Comparing
the two formulations of τ instantly yields:
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Lemma 2.2. The mapping τ : x→ xr, y → ys with r, s ∈ F ′ defines an au-
tomorphism of F if and only if r = [x, f ] and s = [y, f ] for some f ∈ F . Simi-
larly, the mapping τ ′ : x→ rx, y → sy with r, s ∈ F ′ defines an automorphism
of F if and only if r = [f, x−1] and s = [f, y−1] for some f ∈ F .

For each c > 3, the IA-endomorphism τ : x→ x[x, y, y], y → y of F induces
an automorphism of the free nilpotent group F/γc+1(F ) of class c. If τ induces
a tame automorphism of F/γc+1(F ) (i.e. one induced by an automorphism of F )
then, for some r, s ∈ γc+1(F ), the endomorphism τ ′ : x → x[x, y, y]r, y → ys,
must be an automorphism of F . By Lemma 2.2, we must then have [x, y, y]r =
[x, f ] and s = [y, f ] for some f ∈ F . In particular f ∈ F ′. It is well-known
fact that if u ∈ γi(F ), u /∈ γi+1(F ) and v ∈ γj(F ), v /∈ γj+1(F ) for some i 6= j
then [u, v] /∈ γi+j+1(F ). Since s = [y, f ] ∈ γc+1(F ), it follows that f ∈ γc(F )
and in turn [x, y, y] ∈ γ4(F ), which is not the case. We thus have the following
corollary to Lemma 2.2.

Corollary 2.3 (cf. [1, 3]). A two-generator free nilpotent group of class c > 3
has non-tame automorphisms.

3 Nielsen’s commutator test

Let R < F ′ be a normal subgroup of the free group F . In this section, we
elaborate on some examples of groups of the form F/R′ for which Nielsen’s
commutator test is not valid. Specifically, we prove

Theorem 3.1. Let R < F ′ be a non-trivial normal subgroup of F such that

(i) the centre of F/[R,F ] is R/[R,F ] and

(ii) the group ring Z(F/R) is an Ore domain (i.e. Z(F/R) has no zero divisors
and any two non-zero elements have a common non-zero multiple).

Then there exist u, v ∈ F such that [u, v] ≡ [x, y] (mod R′), while the endomor-
phism x→ u, y → v of F does not induce an automorphism of F/R′.

Proof. Choose some r ∈ R, r /∈ R′. Let u ≡ rax (mod R′) and v ≡ rby
(mod R′) for some a, b ∈ ZF (to be specified later). Then, modulo R′ we have

[rax, rb, y] ≡ [rax, y][rax, rb]y ≡ [ra, y]x[x, y][x, rb]y ≡ [x, y][ra, y]x[x,y][x, rb]y

≡ [x, y][ra, y]y
−1xy[x, rb]y ≡ [x, y][y−1, ra]xy[rb, x−1]xy

≡ [x, y]r(a(1−y
−1)+b(x−1−1))xy.

Thus, the congruence [rax, rby] ≡ [x, y] (mod R′) is equivalent to the congru-
ence

r(a(1−y
−1)+b(x−1−1)) ≡ 1 (mod R′).

Since Z(F/R) has no zero-divisors, it follows by Lemma 2.1 that

a(y−1 − 1) ≡ b(x−1 − 1) modulo ∆R, (1)
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where a, b ∈ ∆F (since R < F ′ implies that ∆R lies in ∆2
F ). By condition (ii)

of our theorem there exist a, b /∈ ∆R satisfying the congruence (1). We choose
one such pair of elements a and b satisfying (1) and consider elements u and v
of F such that

u ≡ rax and v ≡ rby (mod R′).

For this choice of u and v, it is easy to see that the congruence [u, v] ≡ [x, y]
(mod R′) holds. Suppose that the mapping x → u, y → v induces an auto-
morphism of the group F/R′. Then this being an IA-automorphism of F/R′ it
must be inner by a result of Bachmuth et al. [4]. In that case, as in Lemma 2.2,
we would have, for some f ∈ F ,

ra ≡ [f, x−1] (mod R′) and rb ≡ [f, y−1] (mod R′). (2)

Since ra, rb are in [R,F ] (a, b ∈ ∆F ), it follows that f [R,F ] is in the centre of
F/[R,F ] which by hypothesis is R/[R,F ]. Thus f ∈ R \ R′. Now, (2) yields,
by commuting appropriately with y−1 and x−1, the congruences

ra(y
−1−1) ≡ [f, x−1, y−1] and rb(x

−1−1) ≡ [f, y−1, x−1] (mod R′),

which upon using (1) yield the congruence

[f, x−1, y−1] ≡ [f, y−1, x−1] (mod R′),

or, equivalently, [f, x−1y−1] ≡ [f, y−1x−1] (mod R′), since f ∈ R. Now, an ap-
plication of this last congruence in the expansion of the equation [f, x−1y−1] =
[f, [x, y]y−1x−1] modulo R′ gives [f, [x, y]] ∈ R′ which implies (using Lemma 2.1)
that [y, x] ∈ R implying that F/R is abelian, contrary to the choice of R. This
completes the proof of the theorem.

The following corollary to Theorem 3.1 sharply contrasts the cited result of
Durnev [6].

Corollary 3.2. Let N be a proper normal subgroup of F such that F/N is
solvable. Then there are elements u, v in F such that [u, v] ≡ [x, y] (mod N ′′)
but the endomorphism x → u, y → v of F does not induce an automorphism
of F/N ′′.

Proof. Since F/N ′ is a torsion-free solvable group (see [9, p. 23]), it follows
by a recent theorem of Kropholler et al. [11] that the group ring Z(F/N ′) has
no zero divisors. Thus with R = N ′, F/R is solvable and Z(F/R) has no zero
divisors. It follows by a result of Lewin [12] that Z(F/R) is an Ore domain.
Since the centre of F/[R,F ] (= F/[N ′, F ]) is always R/[R,F ] (see [9, p. 117]),
the hypothesis of Theorem 3.1 is satisfied by R and the corollary follows.

Corollary 3.3.

(a) For each k > 3, there exists an endomorphism φk : F → F which does
not induce an automorphism of the free solvable group F/F (k) of derived
length k, whereas (by Corollary 3.2) [φk(x), φk(y)] ≡ [x, y] mod F (k);
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(b) (b) For each c > 3, there exists an endomorphism ψc : F → F which does
not induce an automorphism of F/[γc(F ), γc(F )], whereas [ψc(x), ψc(y)] ≡
[x, y] mod [γc(F ), γc(F )] (by Theorem 3.1).

4 Non-tameness of Aut(F/V )

We recall a result of Bachmuth et al. [4] which states that if R is a normal
subgroup of the free group F = 〈x, y;∅〉 such that R is contained in the com-
mutator subgroup F ′ and the group ring Z(F/R) has no zero divisors, then every
IA-automorphism of the group F/R′ is an inner automorphism and hence, in
particular, is tame. This phenomenon seems to be limited only to F/R′ groups
as we prove

Proposition 4.1. Let U and V be fully invariant non-trivial subgroups of F
such that F/U is infinite and [U ′, F ] > V > γm(U) for some m > 3. Then
the group F/V has non-tame IA-automorphism.

Proof. Choose some u ∈ U ′, u /∈ [U ′, F ]. Then the mapping τ : x→ xu, y →
y induces an automorphism of the group F/V (since U/V is nilpotent). If
τ : x → xu, y → y induces a tame automorphism of F/V then by Lemma 2.2
we would have u = [x, f ]r and 1 = [y, f ]s for some f ∈ F and r, s ∈ V . In
particular, [x, f ] ∈ U ′ and [y, f ] ∈ U ′ which implies fU ′ lies in the centre
of F/U ′. Since F/U is infinite, the centre of F/U ′ is trivial ([2], see [9, p. 26]).
Thus f ∈ U ′ which in turn implies u ∈ [U ′, F ], contrary to the choice of u. This
completes the proof.

If F/V is a non-nilpotent free polynilpotent group other than of the form
F/[U,U ], then there is a fully invariant subgroup U with F/U infinite such
that for some m > 3, [U ′, F ] > V = γm(U). Thus together with Corollary 2.3
and the fact that every IA-automorphism of F/[γn(W ), γn(W )], n > 2, is inner
(see [4]), Proposition 4.1 immediately yields the following:

Theorem 4.2. Let F/V be a non-trivial free polynilpotent group of rank
two. Then F/V has non-tame IA-automorphisms except when V = γ2(F ) or
V = γ3(F ), or when V is of the form [γn(W ), γn(W )], n > 2.

The requirement in Proposition 4.1 that F/U be infinite can be relaxed as
we prove:

Proposition 4.3. Let U and V be non-trivial fully invariant subgroups of F
such that [γ3(U), F ] > V > γm(U) for some m > 4. Then the group F/V has
non-tame automorphisms.

Proof. Let c be maximal with respect to the property that γ3(U) 6 γc(F ).
Then c > 3. We choose u ∈ γ3(U) \ γc+1(F ). Assume that the endomorphism
τ : x → xu, y → y induces a tame automorphism of the group F/V . Then, by
Lemma 2.2, for some f in F we must have u = [x, f ]v1, 1 = [y, f ]v2 for some
v1, v2 ∈ V 6 [γ3(U), F ] 6 γc+1(F ). Since, [x, f ], [y, f ] ∈ γc(F ), it follows that
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f ∈ γc−1(F ). Further, [y, f ] ∈ γc+1(F ) implies, as before, that f ∈ γc(F ). Now
u = [x, f ]v1 implies that u ∈ γc+1(F ), contrary to the choice of u.

Remark. Results similar to those in Theorem 4.2 can also be proved easily
for some other relatively free groups defined by outer commutator words (e.g.
F/[γn(F ), γm(F )], n > m > 2). We omit the details.

We conclude this section by answering a question from Bryant et al. [5].
Following [5], we call an element z of (∆F )m “balanced” if, modulo (∆F )m+1,
z belongs to the additive subgroup of (∆F )m spanned by all elements of the form

(xi(1) − 1)(xi(2) − 1) . . . (xi(m) − 1)− (xi(2) − 1) . . . (xi(m) − 1)(xi(1) − 1),

where xi(j) ∈ {x, y}. The main result of [5] is a necessary condition for tame-
ness of certain automorphisms of free nilpotent groups in terms of certain sums
of partial derivatives being balanced, and it is asked in [5] if the condition is
also sufficient. Adapted to the rank two situation the criterion states that if
an automorphism φ of the group F/γc+1(F ), c > 3, induces by x→ xu, y → yv
with u, v ∈ γc(F ), is tame then ∂u/∂x + ∂v/∂y must be a balanced element
of (∆F )c−1. Papistas [15] has recently answered the above question in the nega-
tive by proving that the condition of being balanced is not in general sufficient.
Here we offer an alternative proof.

Example 4.4. Consider the automorphism of the group F/γ6(F ) induced
by the following endomorphism of F :

φ : x→ xu, y → y with u = [[x, y], [x, y, y]].

If φ induces a tame automorphism of F/γ6(F ) then, by Lemma 2.2, we must
have r, s ∈ γ6(F ) and f ∈ F such that ur = [x, f ] and s = [y, f ] holds in F .
This implies, in particular, that [f, x], [f, y] ∈ F ′′γ6(F ) so that fF ′′γ6(F ) is
in the centre of F/F ′′γ6(F ) which is known to be F ′′γ5(F )/F ′′γ6(F ) (see [13,
36·22]). Thus f ∈ F ′′γ5(F ) 6 γ5(F ) (since F ′′ < γ5(F ) for F of rank 2). But
then u = [x, f ]r−1 belongs to γ6(F ), contrary to hypothesis. Thus φ does not
induce a tame automorphism of F/γ6(F ).

For any r, s ∈ γ6(F ), we next exhibit ∂(ur)/∂x+ ∂s/∂y modulo (∆F )5 and
show that it is balanced. Indeed, working modulo (∆F )5 we have

∂r/∂y ≡ 0, ∂s/∂y ≡ 0,

and

∂[[x, y], [x, y, y]]/∂x ≡ (y−1)2(x−1)(y−1)+2(x−1)(y−1)3−3(y−1)(x−1)(y−1)2

which is clearly a balanced element of (∆F )4.

Remark. With the choice of u = [[x, y], [x, y, . . . , y]] ∈ γc(F ) ∩ F ′′, u /∈
γc+1(F ), c > 6, a similar argument yields examples for the higher values of c.
We omit the details.
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5 Commutator test for groups of type F ′/[R′, F ]

While Nielsen’s commutator test does not hold for most F/R′ groups of rank 2,
the groups of the form F/[R′, F ] behave altogether differently. Here we prove
the following result.

Theorem 5.1. Let R be a non-trivial normal subgroup of the free group
F = 〈x, y;∅〉. If [u, v] ≡ [x, y]±g mod [R′, F ] for some g ∈ F , then u and v
generate F modulo [R′, F ].

Proof. We may clearly assume that [u, v] ≡ [x, y] mod [R′, F ]. Since [R′, F ]−
1 6 ∆F ∆R∆F (see, for instance, [9, p. 113]), we have:

[u, v] ≡ [x, y] mod ∆F ∆R∆F . (3)

Taking right Fox derivatives of both sides of (3) yields

∂′u/∂′x(v − [u, v]) + ∂′v/∂′x(1− v−1uv) ≡ (y − [x, y]) mod ∆R∆F

∂′u/∂′y(v − [u, v]) + ∂′v/∂′y(1− v−1uv) ≡ (1− y−1xy) mod ∆R∆F .

}
(4)

Now, taking the left Fox derivatives of both sides of the congruences in (4) yield
four congruences modulo ∆R given by the following matrix equation:(

∂′u/∂′x ∂′v/∂′x
∂′u/∂′y ∂′v/∂′y

)(
∂(v − [u, v])/∂x ∂(v − [u, v])/∂y
∂(1− v−1uv)/∂x ∂(1− v−1uv)/∂y

)
=

(
x−1y−1(y − 1) 1− x−1y−1(x− 1)
−y−1 y−1 − y−1x

)
.

It is easily verified that the matrix on the right-hand side above is invertible
over ZF , and hence also over ZF (mod ∆R). Hence the Jacobian matrix on
the left-hand side is also invertible over ZF (mod ∆R) which, by a result of
Krasnikov [10] (see [9, p. 29]), implies that u and v generate F modulo R′. It
follows that u and v also generate F modulo any normal subgroup V of R such
that R/V is nilpotent. Thus u and v generate F modulo [R′, F ], as was to be
proved.

Although the elements u and v generate the group F/[R′, F ] under the condi-
tions of Theorem 5.1 we cannot, in general, conclude that the mapping induced
by x → u, y → v defines an automorphism of the group F/[R′, F ] since, for
instance, F/[R′, F ] may be non-Hopfian. Since [R′, F ] might not be fully invari-
ant in F , this mapping may not even define an endomorphism of F/[R′, F ]. As
a (partial) converse of Theorem 5.1, we can prove the following result.

Proposition 5.2. Let R be a normal subgroup of the free group F such
that R 6 F ′ and the group ring Z(F/R) has no zero divisors. If the mapping
τ : x→ u, y → v induces an automorphism of the group F/[R′, F ] then [u, v] ≡
[x, y]±g mod [R′, F ] for some g ∈ F .
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Proof. Let τ induce some automorphism ψ of the group F/R′. Then ψ is
tame (Bachmuth et al. [4]) and hence a composition of the inner automorphisms
of F/R′ together with the automorphisms of F/R′ induced by the maps x →
y, y → x and x→ xy, y → y. It suffices, therefore, to verify that the congruence
[τ(x), τ(y)] ≡ [x, y]±g mod [R′, F ] holds for some g in F when τ is assumed to be
an inner automorphism of F/[R′, F ], or else defined by the maps x→ y, y → x
and x → xy, y → y. These verifications are straightforward and we omit
the details.

The second author is grateful to the Department of Mathematics of the Uni-
versity of Manitoba for its warm hospitality during his visit when this work was
initiated.

References

[1] S. Andreadakis, On the automorphisms of free groups and free nilpotent
groups, Proc. London Math. Soc. (3), 15 (1965), 239–268.

[2] M. Auslander and R. C. Lyndon, Commutator subgroups of free groups,
Amer. J. Math., 77 (1955), 929–931.

[3] S. Bachmuth, Induced automorphisms of free groups and free metabelian
groups, Trans. Amer. Math. Soc., 122 (1966), 1–17.

[4] S. Bachmuth, E. Formanek, and H. Y. Mochizuki, IA-automorphisms of
certain two-generator torsion-free groups, J. Algebra, 40 (1976), 19–30.

[5] R. M. Bryant, C. K. Gupta, F. Levin, and H. Y. Mochizuki, Non-tame
automorphisms of free nilpotent groups, Comm. Algebra, 18 (11) (1990),
3619–3631.

[6] V. G. Durnev, The Mal’tsev–Nielsen equation in a free metabelian group
of rank two, Math. Notes, 46 (1989), 927–929.

[7] R. H. Fox, Free differential calculus. I. Derivation in the free group ring,
Ann. Math. (2), 57 (1953), 547–560.

[8] C. K. Gupta and F. Levin, Tame-range of automorphism groups of free
polynilpotent groups, Comm. Algebra, 19 (1991), 2497–2500.

[9] N. Gupta, Free group rings, Contemp. Math., 66 (1987), American Math.
Society, R.I.

[10] A. F. Krasnikov, Generators of the group F/[N,N ], Math. Notes, 24 (1979),
591–594.

[11] P. Kropholler, P. Linnell, and J. Moody, Applications of a new K-theoretic
theorem to solvable group rings, Proc. Amer. Math. Soc., 194 (1988), 675–
684.

8



[12] J. Lewin, A note on zero divisors in group rings, Proc. Amer. Math. Soc.,
31 (1972), 357–359.

[13] H. Neumann, Varieties of groups, Springer-Verlag, Berlin–Heidelberg–New
York (1967).

[14] J. Nielsen, Die Isomorphismen der allgemeinen unendlichen Gruppe mit
zwei Erzeugenden, Math. Ann., 78 (1918), 385–397.

[15] A. I. Papistas, Non-tame automorphisms of free nilpotent groups of rank 2,
Comm. Algebra, 21 (1993), 1751–1759.

[16] V. Shpilrain, Automorphisms of F/R′ groups, Internat. J. Algebra Comp.,
1 (1991), 177–184.

9


