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Abstract. Fully homomophic encryption enables private computation
over sensitive data, such as medical data, via potentially quantum-safe
primitives. In this extended abstract we provide an overview of an im-
plementation of a private-key fully homomorphic encryption scheme in
a protocol for private Naive Bayes classification. This protocol allows a
data owner to privately classify her data point without direct access to
the learned model. We implement this protocol by performing privacy-
preserving classification of breast cancer data as benign or malignant.
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1 Introduction

Fully-homomorphic encryption (FHE) encompasses potentially quantum-safe
primitives which allows for computation of arbitrary functions over encrypted
data. The majority of current FHE research is public-key. In contrast, private
key cryptosystems require prior knowledge of the encryption/decryption key(s).
While this is considered a disadvantage when the goal is purely communication,
these cryptosytems are in fact excellent for applications involving sensitive data
[20].

A number of papers have approached the problem of private computation
over medical data. Some of these applications focus specifically on genomic com-
putation, including edit distance [10], string matching [28, 3], genomic tests such
as ancestry and paternity [9], and other genomic tests [23, 22]. Other research
focuses on the task of private classification, including neural networks [17, 27],
decision trees [5], and Fisher’s linear discriminant classifier [19]. All of these
applications take place in the public-key setting.
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In this extended abstract we propose a fully homomorphic private-key proto-
col for private Naive Bayes classification, a private argmax protocol, and a new
fully homomorphic method of encoding floating point values. We test the pro-
tocol on publicly available breast cancer data [24] using the GKS FHE scheme
[20] to achieve private classification in under one second.

2 Fully Homomorphic Encryption

A scheme is called additively or multiplicatively homomorphic, respectively, if
Jx+yK = JxK⊕JyK and Jx·yK = JxK⊗JyK for operations ⊕ and ⊗ in the ciphertext
space and JαK denotes the encryption of a value α. Because a boolean circuit
can describe arbitrary comptuation, a scheme is called fully homomorphic if it
is both additively and multiplicatively homomorphic [26].

The first FHE scheme was a lattice-based public-key encryption scheme
introduced by Gentry which was theoretically revolutionary but impractical
implementation-wise [12]. Improvements on this method led quickly to the sec-
ond generation of fully homomorphic encryption schemes [7, 6, 11] including the
BGV scheme [8, 7, 6] and YASHE [4]. More recent improvements have built upon
this foundation to yield even faster schemes [2, 16, 13, 15, 14, 21]. These schemes
are all lattice-based, which is broadly considered a potentially quantum-resistant
primitive.

More recently, interest has grown in private-key fully homomoprhic encryp-
tion. The GKS scheme [20] is a ring- and group-based private-key FHE scheme.
It avoids some of the computational overhead required for fully homomorphic
public key encryption and joins other schemes as a potentially quantum-resistant
primitive. The GKS scheme is secure against a ciphertext-only attack.

3 Privacy-Preserving Classification

The main utility of fully homomorphic encryption lies in privacy-preserving clas-
sification, where a user classifies her datapoint using a data owner’s learned
model and neither party learns information about the other party’s data [5]. A
major application of PPC lies in the medical field. With PPC, a patient could use
her medical data to perform medical analyses without worrying about revealing
any of her personal information.

Leveled homomorphic encryption schemes (LHE), a variant on fully homo-
morphic encryption which allows for computation up to a predefined depth, such
as YASHE have been used in an application of neural networks to encrypted data
called CryptoNets [17]. ML Confidential [19] uses LHE to run classification us-
ing Linear Means and Fisher’s Linear Discriminant classifiers. The authors in
[5] construct protocols for privacy-preserving classification via hyperplane detec-
tion, Naive Bayes, and decision trees using two additively homomorphic encryp-
tion schemes, Quadratic Reciprocity (QR) [18] and Paillier [25], and one leveled
homomorphic encryption scheme, HELib [21].
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4 Proposed Method for Fully Homomorphic Private
Classification With Naive Bayes

We use private-key fully homomorphic encryption in order to provide private
classification using a learned Naive Bayes model. Our method follows from the
method of Bost et. al. [5] but varies in several important ways. Bost et. al. re-
encode ciphertexts between two additively homomorphic, public-key encryption
schemes. Our implementation uses one fully homomorphic, private-key encryp-
tion scheme.

Assume that a Data Owner, D, wishes to classify her vector X which contains
q features based off of a learned model w owned by a Classification Model Owner,
C. The group G contains r distinct classes, G1, . . . , Gr. During this protocol C
should learn no unnecessary information about the input provided by D, and D
should learn nothing but the predicted class index of X.

C prepares tables P represented as a column vector of degree r where Pi =
Pr(G = Gi), the prior probability on class Gi, and T , an r × q matrix where
entry Tij represents Pr(X = Xj |G = Gi). Private classification proceeds as
follows:

1: C prepares the tables P and T and sends JP K and JT K to D.
2: For each class Gi for i from 1 to r, D computes

pi = JPiK ·
p∏
j=1

JTijK =

u

vPi ·
p∏
j=1

Tij

}

~ = JPr(Gi|X))K.

3: D computes i = argmax
1≤i≤r

JPr(Gi|X))K using a private argmax protocol.

The privacy of the learned model is derived from the FHE scheme used during
the protocol. The Data Owner’s privacy depends on the argmax protocol in
step 3. Let F denote a family of monotone, continuous, additively homomorphic
functions that commute with encryption. Our protocol for computing private
argmax is as follows:

1: Set I = {1, 2, . . . , r}.
2: while |I| > 1 do
3: D computes a random permutation π on I and randomly chooses f ← F
4: D computes v = f(Jpπ(1)K)− f(Jpπ(2)K) = Jf(pπ(1) − pπ(2))K
5: D sends v to C.
6: C decrypts v and recovers f(pπ(1) − pπ(2)). If this value is negative, C

sends the bit b = 0 to D, otherwise send b = 1.
7: If b = 0, remove π(1) from I. Otherwise remove π(2).
8: end while
9: D returns I.

During this protocol, C collects r values representing the result of a monotone
function applied to the difference between random pairs of the posterior prob-
abilities. The application of an unknown monotone function to this difference
prevents C from learning partial information from the decrypted value.
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5 Implementation

5.1 Fully Homomorphic Encoding

We must encode values in a way which preserves the fully homomorphic prop-
erties of the scheme. In the GKS scheme, elements are encoded in the ring

Sn = 〈x1, x2, . . . , xn|p · 1 = 0, x2i = xi,

and xixj = xjxi for all i, j〉.

The plaintext ring P and a public ciphertext ring C are rings of the above form,
where P ⊂ C. Elements have coefficients which lie in the field Zp. The authors
of [20] provide a straightforward method of implementing a fully homomorphic
encoding of integer values by mapping the element 1 of Zp to any idempotent
element of S. In order to encode floating point values, the most straightforward
approach is to scale the floating point values to integer values with a fixed
precision, although decoding requires the user to keep track of the number of
times the protocol performs multiplication. However, this approach results in
fast overflow over the prime modulus p.

We constructed a more space-efficient encoding for numbers n ∈ (−1, 1).
Each of these values has a base-10 representation n = (±1)

∑∞
i=1 di · 10−i where

di is a digit. Let the depth of a digit be the value of its corresponding base-10
exponent i. Any number n as described above can be represented as a collection
of (integer, depth) pairs as Encode(n) = {(±di, i) : i ≥ 1}, where di is positive
if n is positive and di is negative whenever n is negative. Converting an encoded
integer back to base 10 is as simple as computing the sum of the digits in base
10.

Add encoded values by adding values which share a depth. To perform mul-
tiplication, assume m = {(mi, i)|1 ≤ i ≤ B} and n = {(nj , j)|1 ≤ j ≤ B} for
some maximum depth bound B. Then,

m · n = {(mi · nj , i+ j)|1 ≤ i ≤ B, 1 ≤ j ≤ B}.

Small values of B provide high accuracy. The value for B in the experiments
below is 20 and no loss of accuracy due to depth bound occurs. Observe that
while the initial encoding uses integers 0 through 9 in base 10, the integer values
after addition or multiplication operations do not necessarily have to be digits.
For example, the number .048 would be encoded using the above method as

{(4, 2), (8, 3)}. (1)

However, if we first encoded the numbers 0.6, 0.8, and 0.1 as {(6, 1)}, {(8, 1)},
and {(1, 1)}, then multiplied in their encoded forms we would write

0.6 · 0.8 = {(6, 1)} · {(8, 1)} = {(48, 2)}

and
(0.6 · 0.8) · 0.1 = {(48, 2)} · {(1, 1)} = {(48, 3)}. (2)

Observe that the values in equations 1 and 2 both decode to 0.048.
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Table 1. Unencrypted Versus Encrypted Experimental Results

Training Set Size
Time (s) Accuracy Sensitivity Specificity

Unenc. Enc. Unenc. Enc. Unenc. Enc. Unenc. Enc.

S = 100 0.00001 0.580 0.960 0.946 0.958 0.958 0.974 0.940

S = 200 0.00001 0.633 0.962 0.939 0.941 0.941 0.972 0.939

S = 300 0.00001 0.631 0.979 0.971 0.949 0.949 0.989 0.978

S = 400 0.00001 0.614 0.985 0.968 0.955 0.955 0.995 0.972

5.2 Experiments

To test the above protocols, we implemented a Naive Bayes algorithm to create
a learned model and encrypted this learned model using the GKS Encryption
Scheme [20]. The size of the ciphertext ring in the experiments was 28 = 256,
and the prime modulus was given by p = 700, 000, 001. The family of functions
used during private argmax is given by

F = {f : R→ R : f(m) = km}.

for sufficiently small k ∈ Z to avoid overflow over the prime modulus p. Our pro-
tocols were implemented in C++ and run on a MacBook Pro using El Capitan,
a 2.3 GHz Intel Core i7, and with 16 GB memory.

Additive smoothing was performed on the prior probability tables before
encryption. Specifically, each probability was increased by 0.1. Any value which
was greater than or equal to 1 after smoothing was reset to 0.9, truncated at 20
digits.

Data from the UCI Machine Learning Repository was used to test the perfor-
mance of the protocols [24]. Specifically, we looked at the Breast Cancer Wiscon-
sin (Original) Data Set which contains 683 complete data points each containing
an ID along with 9 attributes and a binary classification. The data gives measure-
ments taken from fine-needle aspirate (FNA) biopsies of benign and malignant
breast tumors. Each of the nine attributes was measured by a clinician on a
scale of 1 to 10 at the time it was collected. Previous research found that while
each measurement holds clinical significance in diagnosing a breast tumor as
benign or as malignant, a single attribute is not enough to distinguish between
the two cases [29]. In the statistical analysis provided, a positive classification
denotes a malignant classification and a negative classification denotes a benign
classification.

The time data in the Table 1 represents the number of seconds it takes to
classify a single data point. The time increase between encrypted and unen-
crypted classification is quite steep. However, this is to be expected and occurs
to varying degrees in all fully homomorphic implementations.

The loss in accuracy between the encrypted and unencrypted settings oc-
curred due to overflow over the prime modulus p. Observe, however, that this
situation was still quite rare, and we were able to attain high accuracy using
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only the built-in data types in C++. To increase the size of the prime modulus
one could use an arbitrary precision library such as the GNU Multiple Precision
Library (GMP) [1] which allows for integer storage above the built-in data type
limits in C++.
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